Latest

SeminarNeuroscience

Hunger state-dependent modulation of decision-making in larval Drosophila

Katrin Vogt
University of Konstanz
Oct 25, 2022

It is critical for all animals to make appropriate, but also flexible, foraging decisions, especially when facing starvation. Sensing olfactory information is essential to evaluate food quality before ingestion. Previously, we found that <i>Drosophila</i> larvae switch their response to certain odors from aversion to attraction when food deprived. The neural mechanism underlying this switch in behavior involves serotonergic modulation and reconfiguration of odor processing in the early olfactory sensory system. We now investigate if a change in hunger state also influences other behavioral decisions. Since it had been shown that fly larvae can perform cannibalism, we investigate the effect of food deprivation on feeding on dead conspecifics. We find that fed fly larvae rarely use dead conspecifics as a food source. However, food deprivation largely enhances this behavior. We will now also investigate the underlying neural mechanisms that mediate this enhancement and compare it to the already described mechanism for a switch in olfactory choice behavior. Generally, this flexibility in foraging behavior enables the larva to explore a broader range of stimuli and to expand their feeding choices to overcome starvation.

SeminarNeuroscienceRecording

NMC4 Short Talk: The complete connectome of an insect brain

Michael Winding (he/him)
University of Cambridge
Dec 2, 2021

Brains must integrate complex sensory information and compare to past events to generate appropriate behavioral responses. The neural circuit basis of these computations is unclear and the underlying structure unknown. Here, we mapped the comprehensive synaptic wiring diagram of the fruit fly larva brain, which contains 3,013 neurons and 544K synaptic sites. It is the most complete insect connectome to date: 1) Both brain hemispheres are reconstructed, allowing investigation of neural pathways that include contralateral axons, which we found in 37% of brain neurons. 2) All sensory neurons and descending neurons are reconstructed, allowing one to follow signals in an uninterrupted chain—from the sensory periphery, through the brain, to motor neurons in the nerve cord. We developed novel computational tools, allowing us to cluster the brain and investigate how information flows through it. We discovered that feedforward pathways from sensory to descending neurons are multilayered and highly multimodal. Robust feedback was observed at almost all levels of the brain, including descending neurons. We investigated how the brain hemispheres communicate with each other and the nerve cord, leading to identification of novel circuit motifs. This work provides the complete blueprint of a brain and a strong foundation to study the structure-function relationship of neural circuits.

fly larva coverage

2 items

Seminar2
Domain spotlight

Explore how fly larva research is advancing inside Neuro.

Visit domain