focal epilepsy
Latest
Neuroinflammation in Epilepsy: what have we learned from human brain tissue specimens ?
Epileptogenesis is a gradual and dynamic process leading to difficult-to-treat seizures. Several cellular, molecular, and pathophysiologic mechanisms, including the activation of inflammatory processes. The use of human brain tissue represents a crucial strategy to advance our understanding of the underlying neuropathology and the molecular and cellular basis of epilepsy and related cognitive and behavioral comorbidities, The mounting evidence obtained during the past decade has emphasized the critical role of inflammation in the pathophysiological processes implicated in a large spectrum of genetic and acquired forms of focal epilepsies. Dissecting the cellular and molecular mediators of the pathological immune responses and their convergent and divergent mechanisms, is a major requisite for delineating their role in the establishment of epileptogenic networks. The role of small regulatory molecules involved in the regulation of specific pro- and anti-inflammatory pathways and the crosstalk between neuroinflammation and oxidative stress will be addressed. The observations supporting the activation of both innate and adaptive immune responses in human focal epilepsy will be discussed and elaborated, highlighting specific inflammatory pathways as potential targets for antiepileptic, disease-modifying therapeutic strategies.
Why is 7T MRI indispensable in epilepsy now?
Identifying a structural brain lesion on MRI is the most important factor that correlates with seizure freedom after surgery in patients suffering from drug-resistant focal epilepsy. By providing better image contrast and higher spatial resolution, structural MRI at 7 Tesla (7T) can lead to lesion detection in about 25% of patients presenting with negative MRI at lower fields. In addition to a better detection/delineation/phenotyping of epileptogenic lesions, higher signal at ultra-high field also facilitates more detailed analyses of several functional and molecular alterations of tissues, susceptible to detect epileptogenic properties even in absence of visible lesions. These advantages but also the technical challenges of 7T MRI in practice will be presented and discussed.
AI for Multi-centre Epilepsy Lesion Detection on MRI
Epilepsy surgery is a safe but underutilised treatment for drug-resistant focal epilepsy. One challenge in the presurgical evaluation of patients with drug-resistant epilepsy are patients considered “MRI negative”, i.e. where a structural brain abnormality has not been identified on MRI. A major pathology in “MRI negative” patients is focal cortical dysplasia (FCD), where lesions are often small or subtle and easily missed by visual inspection. In recent years, there has been an explosion in artificial intelligence (AI) research in the field of healthcare. Automated FCD detection is an area where the application of AI may translate into significant improvements in the presurgical evaluation of patients with focal epilepsy. I will provide an overview of our automated FCD detection work, the Multicentre Epilepsy Lesion Detection (MELD) project and how AI algorithms are beginning to be integrated into epilepsy presurgical planning at Great Ormond Street Hospital and elsewhere around the world. Finally, I will discuss the challenges and future work required to bring AI to the forefront of care for patients with epilepsy.
Brain mosaicism in epileptogenic cortical malformations
Focal Cortical Dysplasia (FCD) is the most common focal cortical malformation leading to intractable childhood focal epilepsy. In recent years, we and others have shown that FCD type II is caused by mosaic mutations in genes within the PI3K-AKT-mTOR-signaling pathway. Hyperactivation of the mTOR pathway accounts for neuropathological abnormalities and seizure occurrence in FCD. We further showed from human surgical FCDII tissue that epileptiform activity correlates with the density of mutated dysmorphic neurons, supporting their pro-epileptogenic role. The level of mosaicism, as defined by variant allele frequency (VAF) is thought to correlate with the size and regional brain distribution of the lesion such that when a somatic mutation occurs early during the cortical development, the dysplastic area is smaller than if it occurs later. Novel approaches based on the detection of cell-free DNA from the CSF and from trace tissue adherent to SEEG electrodes promise future opportunities for genetic testing during the presurgical evaluation of refractory epilepsy patients or in those that are not eligible for surgery. In utero-based electroporation mouse models allow to express somatic mutation during neurodevelopment and recapitulate most neuropathological and clinical features of FCDII, establishing relevant preclinical mouse models for developing precision medicine strategies.
Indispensable for generating epileptic seizures: where, when, how?
In epilepsy research, a holy grail has been the identification and understanding of the "epileptogenic zone" - operationally defined as the (minimal) area or region of the brain is indispensible for the generation of epileptic seizures. The identification of the epileptogenic zone is particularly important for surgical treatments of focal epilepsy patients, but I will highlight some recent clinical, experimental and theoretical work showing that it is also fundamentally linked with our understanding of epilepsy and seizures. I will conclude with a proposal for an updated understanding of the epileptogenic zone and ictogenesis.
MicroRNAs as targets in the epilepsies: hits, misses and complexes
MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.
Analyzing and modeling SEEG signals during interictal to ictal transition in focal epilepsy
FENS Forum 2024
Development of an innovative radiotherapy using synchrotron-generated X-ray to treat focal epilepsy in a mouse model
FENS Forum 2024
A gene therapy approach for focal epilepsy based on GABA\(_A\) receptor overexpression
FENS Forum 2024
A qualitative analysis of the relationship of glutamate and glutamine and metabolic profiling in focal epilepsy using 7T CRT-FID-MRSI
FENS Forum 2024
focal epilepsy coverage
10 items