TopicNeuro

GED

50 Seminars33 ePosters1 Conference

Latest

ConferenceNeuroscience

COSYNE 2025

Montreal, Canada
Mar 27, 2025

The COSYNE 2025 conference was held in Montreal with post-conference workshops in Mont-Tremblant, continuing to provide a premier forum for computational and systems neuroscience. Attendees exchanged cutting-edge research in a single-track main meeting and in-depth specialized workshops, reflecting Cosyne’s mission to understand how neural systems function:contentReference[oaicite:6]{index=6}:contentReference[oaicite:7]{index=7}.

SeminarNeuroscience

CNS Control of Peripheral Mitochondrial Form and Function: Mitokines

Andy Dillin
University of California, Berkeley
Jan 28, 2025

My laboratory has made an intriguing discovery that mitochondrial stress in one tissue can be communicated to distal tissues. We find that mitochondrial stress in the nervous system triggers the production of entities known as mitokines. These mitokines are discharged from the nervous system, orchestrating a response in peripheral tissues that extends the lifespan of C. elegans. The revelation came as a surprise, given the prevalent belief that cell autonomous mechanisms would underlie the relationship between mitochondrial function and aging. It was also surprising given the prevailing dogma that mitochondrial function must be increased, not decreased, to improve health and longevity. Our work also underscores the fact that mitochondria, which originated as a microbial entity and later evolved into an intracellular symbiont, have retained their capacity for intercommunication, now facilitated by signals from the nervous system. We hypothesize that this communication has evolved as a mechanism to reduce infection from pathogens.

SeminarNeuroscience

Decision and Behavior

Sam Gershman, Jonathan Pillow, Kenji Doya
Harvard University; Princeton University; Okinawa Institute of Science and Technology
Nov 29, 2024

This webinar addressed computational perspectives on how animals and humans make decisions, spanning normative, descriptive, and mechanistic models. Sam Gershman (Harvard) presented a capacity-limited reinforcement learning framework in which policies are compressed under an information bottleneck constraint. This approach predicts pervasive perseveration, stimulus‐independent “default” actions, and trade-offs between complexity and reward. Such policy compression reconciles observed action stochasticity and response time patterns with an optimal balance between learning capacity and performance. Jonathan Pillow (Princeton) discussed flexible descriptive models for tracking time-varying policies in animals. He introduced dynamic Generalized Linear Models (Sidetrack) and hidden Markov models (GLM-HMMs) that capture day-to-day and trial-to-trial fluctuations in choice behavior, including abrupt switches between “engaged” and “disengaged” states. These models provide new insights into how animals’ strategies evolve under learning. Finally, Kenji Doya (OIST) highlighted the importance of unifying reinforcement learning with Bayesian inference, exploring how cortical-basal ganglia networks might implement model-based and model-free strategies. He also described Japan’s Brain/MINDS 2.0 and Digital Brain initiatives, aiming to integrate multimodal data and computational principles into cohesive “digital brains.”

SeminarNeuroscience

Feedback-induced dispositional changes in risk preferences

Stefano Palmintieri
Institut National de la Santé et de la Recherche Médicale & École Normale Supérieure, Paris
Oct 29, 2024

Contrary to the original normative decision-making standpoint, empirical studies have repeatedly reported that risk preferences are affected by the disclosure of choice outcomes (feedback). Although no consensus has yet emerged regarding the properties and mechanisms of this effect, a widespread and intuitive hypothesis is that repeated feedback affects risk preferences by means of a learning effect, which alters the representation of subjective probabilities. Here, we ran a series of seven experiments (N= 538), tailored to decipher the effects of feedback on risk preferences. Our results indicate that the presence of feedback consistently increases risk-taking, even when the risky option is economically less advantageous. Crucially, risk-taking increases just after the instructions, before participants experience any feedback. These results challenge the learning account, and advocate for a dispositional effect, induced by the mere anticipation of feedback information. Epistemic curiosity and regret avoidance may drive this effect in partial and complete feedback conditions, respectively.

SeminarNeuroscienceRecording

Characterizing the causal role of large-scale network interactions in supporting complex cognition

Michal Ramot
Weizmann Inst. of Science
May 7, 2024

Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.

SeminarNeuroscienceRecording

Deepfake Detection in Super-Recognizers and Police Officers

Meike Ramon
University of Lausanne
Feb 13, 2024

Using videos from the Deepfake Detection Challenge (cf. Groh et al., 2021), we investigated human deepfake detection performance (DDP) in two unique observer groups: Super-Recognizers (SRs) and "normal" officers from within the 18K members of the Berlin Police. SRs were identified either via previously proposed lab-based procedures (Ramon, 2021) or the only existing tool for SR identification involving increasingly challenging, authentic forensic material: beSure® (Berlin Test For Super-Recognizer Identification; Ramon & Rjosk, 2022). Across two experiments we examined deepfake detection performance (DDP) in participants who judged single videos and pairs of videos in a 2AFC decision setting. We explored speed-accuracy trade-offs in DDP, compared DDP between lab-identified SRs and non-SRs, and police officers whose face identity processing skills had been extensively tested using challenging. In this talk I will discuss our surprising findings and argue that further work is needed too determine whether face identity processing is related to DDP or not.

SeminarNeuroscienceRecording

ALBA webinar series - Breaking down the ivory tower: Ep. 4 Maria José Diógenes

Maria José Diógenes
iMM - ULisboa, PT
Dec 4, 2023

With this webinar series, the ALBA Disability & Accessibility Working Group aims to bring down the ivory tower of ableism among the brain research community, one extraordinary neuroscientist at a time. These webinars give a platform to scientists with disabilities across the globe and neuroscience disciplines, while reflecting on how to promote inclusive working environments and accessibility to research. For this 4th episode, Dr. Maria José Diógenes (iMM - ULisboa, PT) will talk about how her personal story changed her professional life: from the pharmacy to the laboratory bench and from ageing to Rett Syndrome.

SeminarNeuroscience

Neuromodulation of subjective experience

Siri Leknes
University of Oslo
Nov 14, 2023

Many psychoactive substances are used with the aim of altering experience, e.g. as analgesics, antidepressants or antipsychotics. These drugs act on specific receptor systems in the brain, including the opioid, serotonergic and dopaminergic systems. In this talk, I will summarise human drug studies targeting opioid receptors and their role for human experience, with focus on the experience of pain, stress, mood, and social connection. Opioids are only indicated for analgesia, due to their potential to cause addiction. When these regulations occurred, other known effects were relegated to side effects. This may be the cause of the prevalent myth that opioids are the most potent painkillers, despite evidence from head-to-head trials, Cochrane reviews and network meta-analyses that opioids are not superior to non-opioid analgesics in the treatment of acute or chronic non-cancer pain. However, due to the variability and diversity of opioid effects across contexts and experiences, some people under some circumstances may indeed benefit from prolonged treatment. I will present data on individual differences in opioid effects due to participant sex and stress induction. Understanding the effects of these commonly used medications on other aspects of the human experience is important to ensure correct use and to prevent unnecessary pain and addiction risk.

SeminarNeuroscience

Movements and engagement during decision-making

Anne Churchland
University of California Los Angeles, USA
Nov 8, 2023

When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.

SeminarNeuroscience

Effect of nutrient sensing by microglia on mouse behavior

Agnès Nadjar
University of Bordeaux, France
Nov 7, 2023

Microglia are the brain macrophages, eliciting multifaceted functions to maintain brain homeostasis across lifetime. To achieve this, microglia are able to sense a plethora of signals in their close environment. In the lab, we investigate the effect of nutrients on microglia function for several reasons: 1) Microglia express all the cellular machinery required to sense nutrients; 2) Eating habits have changed considerably over the last century, towards diets rich in fats and sugars; 3) This so-called "Western diet" is accompanied by an increase in the occurrence of neuropathologies, in which microglia are known to play a role. In my talk, I will present data showing how variations in nutrient intake alter microglia function, including exacerbation of synaptic pruning, with profound consequences for neuronal activity and behavior. I will also show unpublished data on the mechanisms underlying the effects of nutrients on microglia, notably through the regulation of their metabolic activity.

SeminarNeuroscience

NOTE: DUE TO A CYBER ATTACK OUR UNIVERSITY WEB SYSTEM IS SHUT DOWN - TALK WILL BE RESCHEDULED

Susanne Schoch McGovern
Universität Bonn
Jun 7, 2023

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output and how neurons are integrated in the surrounding neuronal network. Accordingly, neurons with aberrant morphology have been associated with neurological disorders. Dysmorphic, enlarged neurons are, for example, a hallmark of focal epileptogenic lesions like focal cortical dysplasia (FCDIIb) and gangliogliomas (GG). However, the regulatory mechanisms governing the development of dendrites are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. Nevertheless, its function in neurons is unknown. We found that during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ 3rd, order dendrites both in cultured neurons and living mice. Moreover, SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown causes a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, while excitatory neurotransmission is unaffected. This mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations exhibit significant loss of SLK expression. To uncover the signaling cascades underlying the action of SLK, we combined phosphoproteomics, protein interaction screens and single cell RNA seq. Overall, our data identifies SLK as a key regulator of both dendritic complexity during development and of inhibitory synapse maintenance.

SeminarNeuroscienceRecording

Internal representation of musical rhythm: transformation from sound to periodic beat

Tomas Lenc
Institute of Neuroscience, UCLouvain, Belgium
May 31, 2023

When listening to music, humans readily perceive and move along with a periodic beat. Critically, perception of a periodic beat is commonly elicited by rhythmic stimuli with physical features arranged in a way that is not strictly periodic. Hence, beat perception must capitalize on mechanisms that transform stimulus features into a temporally recurrent format with emphasized beat periodicity. Here, I will present a line of work that aims to clarify the nature and neural basis of this transformation. In these studies, electrophysiological activity was recorded as participants listened to rhythms known to induce perception of a consistent beat across healthy Western adults. The results show that the human brain selectively emphasizes beat representation when it is not acoustically prominent in the stimulus, and this transformation (i) can be captured non-invasively using surface EEG in adult participants, (ii) is already in place in 5- to 6-month-old infants, and (iii) cannot be fully explained by subcortical auditory nonlinearities. Moreover, as revealed by human intracerebral recordings, a prominent beat representation emerges already in the primary auditory cortex. Finally, electrophysiological recordings from the auditory cortex of a rhesus monkey show a significant enhancement of beat periodicities in this area, similar to humans. Taken together, these findings indicate an early, general auditory cortical stage of processing by which rhythmic inputs are rendered more temporally recurrent than they are in reality. Already present in non-human primates and human infants, this "periodized" default format could then be shaped by higher-level associative sensory-motor areas and guide movement in individuals with strongly coupled auditory and motor systems. Together, this highlights the multiplicity of neural processes supporting coordinated musical behaviors widely observed across human cultures.The experiments herein include: a motor timing task comparing the effects of movement vs non-movement with and without feedback (Exp. 1A & 1B), a transcranial magnetic stimulation (TMS) study on the role of the supplementary motor area (SMA) in transforming temporal information (Exp. 2), and a perceptual timing task investigating the effect of noisy movement on time perception with both visual and auditory modalities (Exp. 3A & 3B). Together, the results of these studies support the Bayesian cue combination framework, in that: movement improves the precision of time perception not only in perceptual timing tasks but also motor timing tasks (Exp. 1A & 1B), stimulating the SMA appears to disrupt the transformation of temporal information (Exp. 2), and when movement becomes unreliable or noisy there is no longer an improvement in precision of time perception (Exp. 3A & 3B). Although there is support for the proposed framework, more studies (i.e., fMRI, TMS, EEG, etc.) need to be conducted in order to better understand where and how this may be instantiated in the brain; however, this work provides a starting point to better understanding the intrinsic connection between time and movement

SeminarNeuroscienceRecording

Signatures of criticality in efficient coding networks

Shervin Safavi
Dayan lab, MPI for Biological Cybernetics
May 3, 2023

The critical brain hypothesis states that the brain can benefit from operating close to a second-order phase transition. While it has been shown that several computational aspects of sensory information processing (e.g., sensitivity to input) are optimal in this regime, it is still unclear whether these computational benefits of criticality can be leveraged by neural systems performing behaviorally relevant computations. To address this question, we investigate signatures of criticality in networks optimized to perform efficient encoding. We consider a network of leaky integrate-and-fire neurons with synaptic transmission delays and input noise. Previously, it was shown that the performance of such networks varies non-monotonically with the noise amplitude. Interestingly, we find that in the vicinity of the optimal noise level for efficient coding, the network dynamics exhibits signatures of criticality, namely, the distribution of avalanche sizes follows a power law. When the noise amplitude is too low or too high for efficient coding, the network appears either super-critical or sub-critical, respectively. This result suggests that two influential, and previously disparate theories of neural processing optimization—efficient coding, and criticality—may be intimately related

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 18, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscienceRecording

The smart image compression algorithm in the retina: a theoretical study of recoding inputs in neural circuits

Gabrielle Gutierrez
Columbia University, New York
Apr 5, 2023

Computation in neural circuits relies on a common set of motifs, including divergence of common inputs to parallel pathways, convergence of multiple inputs to a single neuron, and nonlinearities that select some signals over others. Convergence and circuit nonlinearities, considered individually, can lead to a loss of information about the inputs. Past work has detailed how to optimize nonlinearities and circuit weights to maximize information, but we show that selective nonlinearities, acting together with divergent and convergent circuit structure, can improve information transmission over a purely linear circuit despite the suboptimality of these components individually. These nonlinearities recode the inputs in a manner that preserves the variance among converged inputs. Our results suggest that neural circuits may be doing better than expected without finely tuned weights.

SeminarNeuroscienceRecording

Are place cells just memory cells? Probably yes

Stefano Fusi
Columbia University, New York
Mar 22, 2023

Neurons in the rodent hippocampus appear to encode the position of the animal in physical space during movement. Individual ``place cells'' fire in restricted sub-regions of an environment, a feature often taken as evidence that the hippocampus encodes a map of space that subserves navigation. But these same neurons exhibit complex responses to many other variables that defy explanation by position alone, and the hippocampus is known to be more broadly critical for memory formation. Here we elaborate and test a theory of hippocampal coding which produces place cells as a general consequence of efficient memory coding. We constructed neural networks that actively exploit the correlations between memories in order to learn compressed representations of experience. Place cells readily emerged in the trained model, due to the correlations in sensory input between experiences at nearby locations. Notably, these properties were highly sensitive to the compressibility of the sensory environment, with place field size and population coding level in dynamic opposition to optimally encode the correlations between experiences. The effects of learning were also strongly biphasic: nearby locations are represented more similarly following training, while locations with intermediate similarity become increasingly decorrelated, both distance-dependent effects that scaled with the compressibility of the input features. Using virtual reality and 2-photon functional calcium imaging in head-fixed mice, we recorded the simultaneous activity of thousands of hippocampal neurons during virtual exploration to test these predictions. Varying the compressibility of sensory information in the environment produced systematic changes in place cell properties that reflected the changing input statistics, consistent with the theory. We similarly identified representational plasticity during learning, which produced a distance-dependent exchange between compression and pattern separation. These results motivate a more domain-general interpretation of hippocampal computation, one that is naturally compatible with earlier theories on the circuit's importance for episodic memory formation. Work done in collaboration with James Priestley, Lorenzo Posani, Marcus Benna, Attila Losonczy.

SeminarNeuroscienceRecording

Fragile minds in a scary world: trauma and post traumatic stress in very young children

Tim Dalgleish
MRC Cognition and Brain Sciences Unit, University of Cambridge
Mar 14, 2023

Post traumatic stress disorder (PTSD) is a prevalent and disabling condition that affects larger numbers of children and adolescents worldwide. Until recently, we have understood little about the nature of PTSD reactions in our youngest children (aged under 8 years old). This talk describes our work over the last 15 years working with this very young age group. It overviews how we need a markedly different PTSD diagnosis for very young children, data on the prevalence of this new diagnostic algorithm, and the development of a psychological intervention and its evaluation in a clinical trial.

SeminarNeuroscience

A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation

Malcolm Campbell
Harvard
Mar 9, 2023

During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.

SeminarNeuroscienceRecording

Orientation selectivity in rodent V1: theory vs experiments

German Mato
CONICET, Bariloche
Feb 15, 2023

Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.

SeminarNeuroscience

When to stop immune checkpoint inhibitor for malignant melanoma? Challenges in emulating target trials

Raphaël Porcher
Université Paris Cité and Université Sorbonne Paris Nord
Jan 30, 2023

Observational data have become a popular source of evidence for causal effects when no randomized controlled trial exists, or to supplement information provided by those. In practice, a wide range of designs and analytical choices exist, and one recent approach relies on the target trial emulation framework. This framework is particularly well suited to mimic what could be obtained in a specific randomized controlled trial, while avoiding time-related selection biases. In this abstract, we present how this framework could be useful to emulate trials in malignant melanoma, and the challenges faced when planning such a study using longitudinal observational data from a cohort study. More specifically, two questions are envisaged: duration of immune checkpoint inhibitors, and trials comparing treatment strategies for BRAF V600-mutant patients (targeted therapy as 1st line, followed by immunotherapy as 2nd line, vs. immunotherapy as 2nd line followed by targeted therapy as 1st line). Using data from 1027 participants to the MELBASE cohort, we detail the results for the emulation of a trial where immune checkpoint inhibitor would be stopped at 6 months vs. continued, in patients in response or with stable disease.

SeminarNeuroscience

Bridging clinical and cognitive neuroscience together to investigate semantics, above and beyond language

Valentina Borghesani
University of Geneva, Switzerland & NCCR Evolving Language
Jan 20, 2023

We will explore how neuropsychology can be leveraged to directly test cognitive neuroscience theories using the case of frontotemporal dementias affecting the language network. Specifically, we will focus on pathological, neuroimaging, and cognitive data from primary progressive aphasia. We will see how they can help us investigate the reading network, semantic knowledge organisation, and grammatical categories processing. Time permitting, the end of the talk will cover the temporal dynamics of semantic dimensions recovery and the role played by the task.

SeminarNeuroscienceRecording

Prefrontal top-down projections control context-dependent strategy selection

Olivier Gschwend
Medidee Services SA, (former postdoc at Cold Spring Harbor Laboratory)
Dec 7, 2022

The rules governing behavior often vary with behavioral contexts. As a result, an action rewarded in one context may be discouraged in another. Animals and humans are capable of switching between behavioral strategies under different contexts and acting adaptively according to the variable rules, a flexibility that is thought to be mediated by the prefrontal cortex (PFC). However, how the PFC orchestrates the context-dependent switch of strategies remains unclear. Here we show that pathway-specific projection neurons in the medial PFC (mPFC) differentially contribute to context-instructed strategy selection. In mice trained in a decision-making task in which a previously established rule and a newly learned rule are associated with distinct contexts, the activity of mPFC neurons projecting to the dorsomedial striatum (mPFC-DMS) encodes the contexts and further represents decision strategies conforming to the old and new rules. Moreover, mPFC-DMS neuron activity is required for the context-instructed strategy selection. In contrast, the activity of mPFC neurons projecting to the ventral midline thalamus (mPFC-VMT) does not discriminate between the contexts, and represents the old rule even if mice have adopted the new one. Furthermore, these neurons act to prevent the strategy switch under the new rule. Our results suggest that mPFC-DMS neurons promote flexible strategy selection guided by contexts, whereas mPFC-VMT neurons favor fixed strategy selection by preserving old rules.

SeminarNeuroscienceRecording

A premotor amodal clock for rhythmic tapping

Hugo Merchant
National Autonomous University of Mexico
Nov 23, 2022

We recorded and analyzed the population activity of hundreds of neurons in the medial premotor areas (MPC) of rhesus monkeys performing an isochronous tapping task guided by brief flashing stimuli or auditory tones. The animals showed a strong bias towards visual metronomes, with rhythmic tapping that was more precise and accurate than for auditory metronomes. The population dynamics in state space as well as the corresponding neural sequences shared the following properties across modalities: the circular dynamics of the neural trajectories and the neural sequences formed a regenerating loop for every produced interval, producing a relative time representation; the trajectories converged in similar state space at tapping times while the moving bumps restart at this point, resetting the beat-based clock; the tempo of the synchronized tapping was encoded by a combination of amplitude modulation and temporal scaling in the neural trajectories. In addition, the modality induced a displacement in the neural trajectories in auditory and visual subspaces without greatly altering time keeping mechanism. These results suggest that the interaction between the amodal internal representation of pulse within MPC and a modality specific external input generates a neural rhythmic clock whose dynamics define the temporal execution of tapping using auditory and visual metronomes.

SeminarNeuroscienceRecording

Network inference via process motifs for lagged correlation in linear stochastic processes

Alice Schwarze
Dartmouth College
Nov 18, 2022

A major challenge for causal inference from time-series data is the trade-off between computational feasibility and accuracy. Motivated by process motifs for lagged covariance in an autoregressive model with slow mean-reversion, we propose to infer networks of causal relations via pairwise edge measure (PEMs) that one can easily compute from lagged correlation matrices. Motivated by contributions of process motifs to covariance and lagged variance, we formulate two PEMs that correct for confounding factors and for reverse causation. To demonstrate the performance of our PEMs, we consider network interference from simulations of linear stochastic processes, and we show that our proposed PEMs can infer networks accurately and efficiently. Specifically, for slightly autocorrelated time-series data, our approach achieves accuracies higher than or similar to Granger causality, transfer entropy, and convergent crossmapping -- but with much shorter computation time than possible with any of these methods. Our fast and accurate PEMs are easy-to-implement methods for network inference with a clear theoretical underpinning. They provide promising alternatives to current paradigms for the inference of linear models from time-series data, including Granger causality, vector-autoregression, and sparse inverse covariance estimation.

SeminarNeuroscienceRecording

Learning by Analogy in Mathematics

Pooja Sidney
University of Kentucky
Nov 10, 2022

Analogies between old and new concepts are common during classroom instruction. While previous studies of transfer focus on how features of initial learning guide later transfer to new problem solving, less is known about how to best support analogical transfer from previous learning while children are engaged in new learning episodes. Such research may have important implications for teaching and learning in mathematics, which often includes analogies between old and new information. Some existing research promotes supporting learners' explicit connections across old and new information within an analogy. In this talk, I will present evidence that instructors can invite implicit analogical reasoning through warm-up activities designed to activate relevant prior knowledge. Warm-up activities "close the transfer space" between old and new learning without additional direct instruction.

SeminarNeuroscience

Identifying central mechanisms of glucocorticoid circadian rhythm dysfunction in breast cancer

Jeremy C. Borniger
Cold Spring Harbor Laboratory
Oct 18, 2022

The circadian release of endogenous glucocorticoids is essential in preparing and synchronizing the body’s daily physiological needs. Disruption in the rhythmic activity of glucocorticoids has been observed in individuals with a variety of cancer types, and blunting of this rhythm has been shown to predict cancer mortality and declines in quality of life. This suggests that a disrupted glucocorticoid rhythm is potentially a shared phenotype across cancers. However, where this phenomenon is driven by the cancer itself, and the causal mechanisms that link glucocorticoid rhythm dysfunction and cancer outcomes remain preliminary at best. The regulation of daily glucocorticoid activity has been well-characterized and is maintained, in part, by the coordinated response of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of the suprachiasmatic nucleus (SCN) and corticotropin-releasing hormone-expressing neurons of the paraventricular nucleus of the hypothalamus (PVNCRH). Consequently, we set out to examine if cancer-induced glucocorticoid dysfunction is regulated by disruptions within these hypothalamic nuclei. In comparison to their tumor-free baseline, mammary tumor-bearing mice exhibited a blunting of glucocorticoid rhythms across multiple timepoints throughout the day, as measured by the overall levels and the slope of fecal corticosterone rhythms, during tumor progression. We further examined how peripheral tumors shape hypothalamic activity within the brain. Serial two-photon tomography for whole-brain cFos imaging suggests a disrupted activation of the PVN in mice with tumors. Additionally, we found GFP labeled CRH+ neurons within the PVN after injection of pseudorabies virus expressing GFP into the tumor, pointing to the PVN as a primary target disrupted by mammary tumors. Preliminary in vivo fiber photometry data show that PVNCRH neurons exhibit enhanced calcium activity during tumor progression, as compared to baseline (no tumor) activity. Taken together, this suggests that there may be an overactive HPA response during tumor progression, which in turn, may result in a subsequent negative feedback on glucocorticoid rhythms. Current studies are examining whether tumor progression modulates SCN calcium activity, how the transcriptional profile of PVNCRH neurons is changed, and test if manipulation of the neurocircuitry surrounding glucocorticoid rhythmicity alters tumor characteristics.

SeminarNeuroscienceRecording

Time as its own representation? Exploring a link between timing of cognition and time perception

Ishan Singhal
Indian Institute of Technology, Kanpur
Sep 28, 2022

The way we represent and perceive time has crucial implications for studying temporality in conscious experience. Contrasting positions posit that temporal information is separately abstracted out like any other perceptual property, or that time is represented through representations having temporal properties themselves. To add to this debate, we investigated alterations in felt time in conditions where only conscious visual experience is altered while a bistable figure remains physically unchanged. In this talk, I will discuss two studies that we have done in relation to answering this question. In study 1, we investigated whether perceptual switches in fixed intervals altered felt time. In three experiments we showed that a break in visual experience (via a perceptual switch) also leads to a break in felt time. In study 2, we are currently looking at figure-ground perception in ambigous displays. Here, in experiment 1 we show that differences in flicker frequencies on ambigous regions can induce figure-ground segregation. To see if a reverse complementarity exists for felt time, we ask participants to view ambigous regions as figure/ground and show that they have different temporal resolutions for the same region based on whether it is seen as figure or background. Overall, the two studies provide evidence for temporal mirroring and isomorphism in visual experience, arguing for a link between the timing of experience and time perception.

SeminarNeuroscienceRecording

Theories of consciousness: beyond the first/higher-order distinction

Jonathan Birch
London School of Economics and Political Science
Sep 10, 2022

Theories of consciousness are commonly grouped into "first-order" and "higher-order" families. As conventional wisdom has it, many more animals are likely to be conscious if a first-order theory is correct. But two recent developments have put pressure on the first/higher-order distinction. One is the argument (from Shea and Frith) that an effective global workspace mechanism must involve a form of metacognition. The second is Lau's "perceptual reality monitoring" (PRM) theory, a member of the "higher-order" family in which conscious sensory content is not re-represented, only tagged with a temporal index and marked as reliable. I argue that the first/higher-order distinction has become so blurred that it is no longer particularly useful. Moreover, the conventional wisdom about animals should not be trusted. It could be, for example, that the distribution of PRM in the animal kingdom is wider than the distribution of global broadcasting.

SeminarNeuroscience

Integrating theory-guided and data-driven approaches for measuring consciousness

Nao Tsuchiya
Monash Institute of Cognitive and Clinical Neurosciences, Monash University
Aug 31, 2022

Clinical assessment of consciousness is a significant issue, with recent research suggesting some brain-damaged patients who are assessed as unconscious are in fact conscious. Misdiagnosis of consciousness can also be detrimental when it comes to general anaesthesia, causing numerous psychological problems, including post-traumatic stress disorder. Avoiding awareness with overdose of anaesthetics, however, can also lead to cognitive impairment. Currently available objective assessment of consciousness is limited in accuracy or requires expensive equipment with major barriers to translation. In this talk, we will outline our recent theory-guided and data-driven approaches to develop new, optimized consciousness measures that will be robustly evaluated on an unprecedented breadth of high-quality neural data, recorded from the fly model system. We will overcome the subjective-choice problem in data-driven and theory-guided approaches with a comprehensive data analytic framework, which has never been applied to consciousness detection, integrating previously disconnected streams of research in consciousness detection to accelerate the translation of objective consciousness measures into clinical settings.

SeminarNeuroscienceRecording

Where do problem spaces come from? On metaphors and representational change

Benjamin Angerer
Osnabrück University
Jun 15, 2022

The challenges of problem solving do not exclusively lie in how to perform heuristic search, but they begin with how we understand a given task: How to cognitively represent the task domain and its components can determine how quickly someone is able to progress towards a solution, whether advanced strategies can be discovered, or even whether a solution is found at all. While this challenge of constructing and changing representations has been acknowledged early on in problem solving research, for the most part it has been sidestepped by focussing on simple, well-defined problems whose representation is almost fully determined by the task instructions. Thus, the established theory of problem solving as heuristic search in problem spaces has little to say on this. In this talk, I will present a study designed to explore this issue, by virtue of finding and refining an adequate problem representation being its main challenge. In this exploratory case study, it was investigated how pairs of participants acquaint themselves with a complex spatial transformation task in the domain of iterated mental paper folding over the course of several days. Participants have to understand the geometry of edges which occurs when repeatedly mentally folding a sheet of paper in alternating directions without the use of external aids. Faced with the difficulty of handling increasingly complex folds in light of limited cognitive capacity, participants are forced to look for ways in which to represent folds more efficiently. In a qualitative analysis of video recordings of the participants' behaviour, the development of their conceptualisation of the task domain was traced over the course of the study, focussing especially on their use of gesture and the spontaneous occurrence and use of metaphors in the construction of new representations. Based on these observations, I will conclude the talk with several theoretical speculations regarding the roles of metaphor and cognitive capacity in representational change.

SeminarNeuroscienceRecording

Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans

Vladyslava Pechuk
Oren lab, Weizmann Institute of Science
Jun 8, 2022

In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.

SeminarNeuroscience

The evolution of computation in the brain: Insights from studying the retina

Tom Baden
University of Sussex (UK)
Jun 2, 2022

The retina is probably the most accessible part of the vertebrate central nervous system. Its computational logic can be interrogated in a dish, from patterns of lights as the natural input, to spike trains on the optic nerve as the natural output. Consequently, retinal circuits include some of the best understood computational networks in neuroscience. The retina is also ancient, and central to the emergence of neurally complex life on our planet. Alongside new locomotor strategies, the parallel evolution of image forming vision in vertebrate and invertebrate lineages is thought to have driven speciation during the Cambrian. This early investment in sophisticated vision is evident in the fossil record and from comparing the retina’s structural make up in extant species. Animals as diverse as eagles and lampreys share the same retinal make up of five classes of neurons, arranged into three nuclear layers flanking two synaptic layers. Some retina neuron types can be linked across the entire vertebrate tree of life. And yet, the functions that homologous neurons serve in different species, and the circuits that they innervate to do so, are often distinct to acknowledge the vast differences in species-specific visuo-behavioural demands. In the lab, we aim to leverage the vertebrate retina as a discovery platform for understanding the evolution of computation in the nervous system. Working on zebrafish alongside birds, frogs and sharks, we ask: How do synapses, neurons and networks enable ‘function’, and how can they rearrange to meet new sensory and behavioural demands on evolutionary timescales?

SeminarNeuroscienceRecording

What the fly’s eye tells the fly’s brain…and beyond

Gwyneth Card
Janelia Research Campus, HHMI
Jun 1, 2022

Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.

SeminarNeuroscience

Malignant synaptic plasticity in pediatric high-grade gliomas

Kathryn Taylor
Stanford
May 25, 2022

Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.

SeminarNeuroscience

Reconstructing inhibitory circuits in a damaged brain

Robert Hunt
University of California-Irvine
May 18, 2022

Inhibitory interneurons govern the sparse activation of principal cells that permits appropriate behaviors, but they among the most vulnerable to brain damage. Our recent work has demonstrated important roles for inhibitory neurons in disorders of brain development, injury and epilepsy. These studies have motivated our ongoing efforts to understand how these cells operate at the synaptic, circuit and behavioral levels and in designing new technologies targeting specific populations of interneurons for therapy. I will discuss our recent efforts examining the role of interneurons in traumatic brain injury and in designing cell transplantation strategies - based on the generation of new inhibitory interneurons - that enable precise manipulation of inhibitory circuits in the injured brain. I will also discuss our ongoing efforts using monosynaptic virus tracing and whole-brain clearing methods to generate brain-wide maps of inhibitory circuits in the rodent brain. By comprehensively mapping the wiring of individual cell types on a global scale, we have uncovered a fundamental strategy to sustain and optimize inhibition following traumatic brain injury that involves spatial reorganization of local and long-range inputs to inhibitory neurons. These recent findings suggest that brain damage, even when focally restricted, likely has a far broader affect on brain-wide neural function than previously appreciated.

SeminarNeuroscience

Neural Representations of Social Homeostasis

Kay M. Tye
HHMI Investigator, and Wylie Vale Chair, The Salk Institute for Biological Studies, SNL-KT
May 17, 2022

How does our brain rapidly determine if something is good or bad? How do we know our place within a social group? How do we know how to behave appropriately in dynamic environments with ever-changing conditions? The Tye Lab is interested in understanding how neural circuits important for driving positive and negative motivational valence (seeking pleasure or avoiding punishment) are anatomically, genetically and functionally arranged. We study the neural mechanisms that underlie a wide range of behaviors ranging from learned to innate, including social, feeding, reward-seeking and anxiety-related behaviors. We have also become interested in “social homeostasis” -- how our brains establish a preferred set-point for social contact, and how this maintains stability within a social group. How are these circuits interconnected with one another, and how are competing mechanisms orchestrated on a neural population level? We employ optogenetic, electrophysiological, electrochemical, pharmacological and imaging approaches to probe these circuits during behavior.

SeminarNeuroscienceRecording

Why do some animals have more than two eyes?

Lauren Sumner-Rooney
Leibniz Institute for Research on Evolution and Biodiversity
May 9, 2022

The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.

SeminarNeuroscienceRecording

The evolution and development of visual complexity: insights from stomatopod visual anatomy, physiology, behavior, and molecules

Megan Porter
University of Hawaii
May 2, 2022

Bioluminescence, which is rare on land, is extremely common in the deep sea, being found in 80% of the animals living between 200 and 1000 m. These animals rely on bioluminescence for communication, feeding, and/or defense, so the generation and detection of light is essential to their survival. Our present knowledge of this phenomenon has been limited due to the difficulty in bringing up live deep-sea animals to the surface, and the lack of proper techniques needed to study this complex system. However, new genomic techniques are now available, and a team with extensive experience in deep-sea biology, vision, and genomics has been assembled to lead this project. This project is aimed to study three questions 1) What are the evolutionary patterns of different types of bioluminescence in deep-sea shrimp? 2) How are deep-sea organisms’ eyes adapted to detect bioluminescence? 3) Can bioluminescent organs (called photophores) detect light in addition to emitting light? Findings from this study will provide valuable insight into a complex system vital to communication, defense, camouflage, and species recognition. This study will bring monumental contributions to the fields of deep sea and evolutionary biology, and immediately improve our understanding of bioluminescence and light detection in the marine environment. In addition to scientific advancement, this project will reach K-college aged students through the development and dissemination of educational tools, a series of molecular and organismal-based workshops, museum exhibits, public seminars, and biodiversity initiatives.

SeminarNeuroscienceRecording

A transcriptomic axis predicts state modulation of cortical interneurons

Stephane Bugeon
Harris & Carandini's lab, UCL
Apr 27, 2022

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.

SeminarNeuroscienceRecording

Four questions about brain and behaviour

Alexandra de Sousa
Bath Spa University
Apr 25, 2022

Tinbergen encouraged ethologists to address animal behaviour by answering four questions, covering physiology, adaptation, phylogeny, and development. This broad approach has implications for neuroscience and psychology, yet, questions about phylogeny are rarely considered in these fields. Here I describe how phylogeny can shed light on our understanding of brain structure and function. Further, I show that we now have or are developing the data and analytical methods necessary to study the natural history of the human mind.

SeminarNeuroscience

Neuromodulation of sleep integrity

Luís de Lecea
Stanford University
Apr 12, 2022

The arousal construct underlies a spectrum of behaviors that include sleep, exploration, feeding, sexual activity and adaptive stress. Pathological arousal conditions include stress, anxiety disorders, and addiction. The dynamics between arousal state transitions are modulated by norepinephrine neurons in the locus coeruleus, histaminergic neurons in the hypothalamus, dopaminergic neurons in the mesencephalon and cholinergic neurons in the basal forebrain. The hypocretin/orexin system in the lateral hypothalamus I will also present a new mechanism underlying sleep fragmentation during aging. Hcrt neurons are hyperexcitable in aged mice. We identify a potassium conductance known as the M-current, as a critical player in maintaining excitability of Hcrt neurons. Genetic disruption of KCNQ channels in Hcrt neurons of young animals results in sleep fragmentation. In contrast, treatment of aged animals with a KCNQ channel opener restores sleep/wake architecture. These data point to multiple circuits modulating sleep integrity across lifespan.

SeminarNeuroscience

Epileptogenesis in the developing brain:understanding a moving target

Tallie Z Baram
University of California-Irvine
Apr 6, 2022

The origins, mechanisms and consequences of epilepsy in the developing brain are incompletely understood. Many developmental epilepsies have a genetic basis and their mechanisms stem from deficits in the function of one or numerous genes. Others, such as those that follow prolonged febrile seizures or severe birth asphyxia in a ‘normal’ brain may depend on the interaction of the insult with the rapidly evolving brain cells and circuits. Yet, how early-life insults may provoke epilepsy is unclear, and requires multiple levels of analysis: behavior, circuits, cells [neurons, glia] and molecules. Here we discuss developmental epileptogenesis, addressing some of its special features: the epilepsy phenotype, the effects insults on the maturation of brain circuits, the role of neuron-glia-neuron communication in cellular and circuit refinement, and how transient epileptogenic insults provoke enduring changes in the structure, connectivity and function of salient neuronal populations. We will highlight resolved questions- and the many unresolved issues that require tackling in 2022 and beyond.

SeminarNeuroscience

The functional connectome across temporal scales

Sepideh Sadaghiani
Assistant Professor, University of Illinois, USA
Mar 30, 2022

The view of human brain function has drastically shifted over the last decade, owing to the observation that the majority of brain activity is intrinsic rather than driven by external stimuli or cognitive demands. Specifically, all brain regions continuously communicate in spatiotemporally organized patterns that constitute the functional connectome, with consequences for cognition and behavior. In this talk, I will argue that another shift is underway, driven by new insights from synergistic interrogation of the functional connectome using different acquisition methods. The human functional connectome is typically investigated with functional magnetic resonance imaging (fMRI) that relies on the indirect hemodynamic signal, thereby emphasizing very slow connectivity across brain regions. Conversely, more recent methodological advances demonstrate that fast connectivity within the whole-brain connectome can be studied with real-time methods such as electroencephalography (EEG). Our findings show that combining fMRI with scalp or intracranial EEG in humans, especially when recorded concurrently, paints a rich picture of neural communication across the connectome. Specifically, the connectome comprises both fast, oscillation-based connectivity observable with EEG, as well as extremely slow processes best captured by fMRI. While the fast and slow processes share an important degree of spatial organization, these processes unfold in a temporally independent manner. Our observations suggest that fMRI and EEG may be envisaged as capturing distinct aspects of functional connectivity, rather than intermodal measurements of the same phenomenon. Infraslow fluctuation-based and rapid oscillation-based connectivity of various frequency bands constitute multiple dynamic trajectories through a shared state space of discrete connectome configurations. The multitude of flexible trajectories may concurrently enable functional connectivity across multiple independent sets of distributed brain regions.

SeminarNeuroscience

Lifestyle, cardiovascular health, and the brain

Filip Swirski
Icahn School of Medicine, MOUNT SINAI, NEW YORK, NY, USA
Mar 29, 2022

Lifestyle factors such as sleep, diet, stress, and exercise, profoundly influence cardiovascular health. Seeking to understand how lifestyle affects our biology is important for at least two reasons. First, it can expose a particular lifestyle’s biological impact, which can be leveraged for adopting specific public health policies. Second, such work may identify crucial molecular mechanisms central to how the body adapts to our environments. These insights can then be used to improve our lives. In this talk, I will focus on recent work in the lab exploring how lifestyle factors influence cardiovascular health. I will show how combining tools of neuroscience, hematology, immunology, and vascular biology helps us better understand how the brain shapes leukocytes in response to environmental perturbations. By “connecting the dots” from the brain to the vessel wall, we can begin to elucidate how lifestyle can both maintain and perturb salutogenesis.

SeminarNeuroscience

Multi-modal biomarkers improve prediction of memory function in cognitively unimpaired older adults

Alexandra N. Trelle
Stanford
Mar 22, 2022

Identifying biomarkers that predict current and future cognition may improve estimates of Alzheimer’s disease risk among cognitively unimpaired older adults (CU). In vivo measures of amyloid and tau protein burden and task-based functional MRI measures of core memory mechanisms, such as the strength of cortical reinstatement during remembering, have each been linked to individual differences in memory in CU. This study assesses whether combining CSF biomarkers with fMRI indices of cortical reinstatement improves estimation of memory function in CU, assayed using three unique tests of hippocampal-dependent memory. Participants were 158 CU (90F, aged 60-88 years, CDR=0) enrolled in the Stanford Aging and Memory Study (SAMS). Cortical reinstatement was quantified using multivoxel pattern analysis of fMRI data collected during completion of a paired associate cued recall task. Memory was assayed by associative cued recall, a delayed recall composite, and a mnemonic discrimination task that involved discrimination between studied ‘target’ objects, novel ‘foil’ objects, and perceptually similar ‘lure’ objects. CSF Aβ42, Aβ40, and p-tau181 were measured with the automated Lumipulse G system (N=115). Regression analyses examined cross-sectional relationships between memory performance in each task and a) the strength of cortical reinstatement in the Default Network (comprised of posterior medial, medial frontal, and lateral parietal regions) during associative cued recall and b) CSF Aβ42/Aβ40 and p-tau181, controlling for age, sex, and education. For mnemonic discrimination, linear mixed effects models were used to examine the relationship between discrimination (d’) and each predictor as a function of target-lure similarity. Stronger cortical reinstatement was associated with better performance across all three memory assays. Age and higher CSF p-tau181 were each associated with poorer associative memory and a diminished improvement in mnemonic discrimination as target-lure similarity decreased. When combined in a single model, CSF p-tau181 and Default Network reinstatement strength, but not age, explained unique variance in associative memory and mnemonic discrimination performance, outperforming the single-modality models. Combining fMRI measures of core memory functions with protein biomarkers of Alzheimer’s disease significantly improved prediction of individual differences in memory performance in CU. Leveraging multimodal biomarkers may enhance future prediction of risk for cognitive decline.

SeminarNeuroscience

Growing Up in Academia with Onur Güntürkün

Onur Güntürkün
Professor in Biopsychology, Psychology Department, Ruhr-Universität Bochum
Feb 28, 2022

There are stories of resilience, passion, braveness and determination and the one of Onur Güntürkün. He has managed to beat the odds in so many ways, from moving countries, surviving the polio, establishing a new field against the advice of a senior professor and much more, all the while keeping a positive spirit, an endless curiosity and the braveness to keep going despite adversities. Join me on Monday, February 28, 2022, 6 p.m. (CET) for a Growing Up in Academia with Onur Güntürkün.

SeminarNeuroscienceRecording

What is Cognitive Neuropsychology Good For? An Unauthorized Biography

Alfonso Caramazza
Cognitive Neuropsychology Laboratory, Harvard University, USA; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
Feb 23, 2022

Abstract: There is no doubt that the study of brain damaged individuals has contributed greatly to our understanding of the mind/brain. Within this broad approach, cognitive neuropsychology accentuates the cognitive dimension: it investigates the structure and organization of perceptual, motor, cognitive, and language systems – prerequisites for understanding the functional organization of the brain – through the analysis of their dysfunction following brain damage. Significant insights have come specifically from this paradigm. But progress has been slow and enthusiasm for this approach has waned somewhat in recent years, and the use of existing findings to constrain new theories has also waned. What explains the current diminished status of cognitive neuropsychology? One reason may be failure to calibrate expectations about the effective contribution of different subfields of the study of the mind/brain as these are determined by their natural peculiarities – such factors as the types of available observations and their complexity, opportunity of access to such observations, the possibility of controlled experimentation, and the like. Here, I also explore the merits and limitations of cognitive neuropsychology, with particular focus on the role of intellectual, pragmatic, and societal factors that determine scientific practice within the broader domains of cognitive science/neuroscience. I conclude on an optimistic note about the continuing unique importance of cognitive neuropsychology: although limited to the study of experiments of nature, it offers a privileged window into significant aspects of the mind/brain that are not easily accessible through other approaches. Biography: Alfonso Caramazza's research has focussed extensively on how words and their meanings are represented in the brain. His early pioneering studies helped to reformulate our thinking about Broca's aphasia (not limited to production) and formalised the logic of patient-based neuropsychology. More recently he has been instrumental in reconsidering popular claims about embodied cognition.

SeminarNeuroscienceRecording

Dynamic dopaminergic signaling probabilistically controls the timing of self-timed movements

Allison Hamilos
Assad Lab, Harvard University
Feb 23, 2022

Human movement disorders and pharmacological studies have long suggested molecular dopamine modulates the pace of the internal clock. But how does the endogenous dopaminergic system influence the timing of our movements? We examined the relationship between dopaminergic signaling and the timing of reward-related, self-timed movements in mice. Animals were trained to initiate licking after a self-timed interval following a start cue; reward was delivered if the animal’s first lick fell within a rewarded window (3.3-7 s). The first-lick timing distributions exhibited the scalar property, and we leveraged the considerable variability in these distributions to determine how the activity of the dopaminergic system related to the animals’ timing. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time, even on single trials. Steeply rising signals preceded early initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movement. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of the timing distribution, whereas inhibition caused late-shifting, as if dopaminergic manipulation modulated the moment-to-moment probability of unleashing the planned movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation. We conclude that ramping dopaminergic signals, potentially encoding dynamic reward expectation, probabilistically modulate the moment-by-moment decision of when to move. (Based on work from Hamilos et al., eLife, 2021).

SeminarNeuroscience

Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice

Tim Viney
University of Oxford
Feb 11, 2022

The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.

SeminarNeuroscienceRecording

Do we reason differently about affectively charged analogies? Insights from EEG research

Yanick Leblanc-Sirois
Université Laval
Feb 10, 2022

Affectively charged analogies are commonly used in literature and art, but also in politics and argumentation. There are reasons to think we may process these analogies differently. Notably, analogical reasoning is a complex process that requires the use of cognitive resources, which are limited. In the presence of affectively charged content, some of these resources might be directed towards affective processing and away from analogical reasoning. To investigate this idea, I investigated effects of affective charge on differences in brain activity evoked by sound versus unsound analogies. The presentation will detail the methods and results for two such experiments, one in which participants saw analogies formed of neutral and negative words and one in which they were created by combining conditioned symbols. I will also briefly discuss future research aiming to investigate the effects of analogical reasoning on brain activity related to affective processing.

SeminarNeuroscience

From natural scene statistics to multisensory integration: experiments, models and applications

Cesare Parise
Oculus VR
Feb 9, 2022

To efficiently process sensory information, the brain relies on statistical regularities in the input. While generally improving the reliability of sensory estimates, this strategy also induces perceptual illusions that help reveal the underlying computational principles. Focusing on auditory and visual perception, in my talk I will describe how the brain exploits statistical regularities within and across the senses for the perception space, time and multisensory integration. In particular, I will show how results from a series of psychophysical experiments can be interpreted in the light of Bayesian Decision Theory, and I will demonstrate how such canonical computations can be implemented into simple and biologically plausible neural circuits. Finally, I will show how such principles of sensory information processing can be leveraged in virtual and augmented reality to overcome display limitations and expand human perception.

ePosterNeuroscience

Gradient and network~structure of lagged correlations\\in band-limited cortical dynamics

Paul Hege, Markus Siegel

Bernstein Conference 2024

ePosterNeuroscience

Adult hippocampal neurogenesis, the post-mortem delay, and prolonged aldehyde fixation: The enemies within

Marta Gallardo Caballero, Carla Rodríguez Moreno, Laura Álvarez Méndez, Júlia Terreros Roncal, Miguel Flor García, Elena Moreno Jiménez, Alberto Rábano, María Llorens Martín

FENS Forum 2024

ePosterNeuroscience

Aged microglia in Alzheimer’s disease display a senescent and pro-inflammatory profile associated with mitochondrial oxidative stress

Vicente Roca Agujetas, Jorge Moreno-Fernández, Cristina Núñez-Díaz, Carmen Romero-Molina, José Carlos Dávila, Sebastián Jiménez-Muñoz, Marina Mejías-Ortega, María Manfredi-Lozano, Elisabeth Sánchez-Mejías, Nicolás Capelo-Carrasco, Clara García-Mayor, Clara Muñoz-Castro, Alberto Pascual, Antonia Gutiérrez, Marisa Vizuete, Javier Vitorica

FENS Forum 2024

ePosterNeuroscience

Altered metabolism in the aged corpus callosum could be related to the loss of myelin and axons

Gonzalo Mayorga, Pablo Alarcon, Rafael Burgos, Maite Castro

FENS Forum 2024

ePosterNeuroscience

Attempt to pharmacologically induce neurovascular uncoupling in aged, experienced rats

Bence Tamás Varga, Attila Gáspár, Aliz Judit Ernyey, Barbara Hutka, Tekla Brigitta Tajti, Levente Kollár, Péter Kovács, Zoltán Sándor Zádori, István Gyertyán

FENS Forum 2024

ePosterNeuroscience

Attentional set-shifting task: An approach to assess prefrontal activity patterns during behavioral flexibility in aged mice

Francisca García, Pablo Fuentealba, Wael El-Deredy, Ignacio Negrón-Oyarzo

FENS Forum 2024

ePosterNeuroscience

Changes in neurotransmitter activity in septo-hippocampal network in naturally aged rats and a rat model of aging induced by D-galactose administration: Relationship with memory impairment

Ekaterine Kipiani, Maia Burjanadze, Gela Beselia

FENS Forum 2024

ePosterNeuroscience

Degeneration of the ascending vestibular pathway accounts for spatial navigation deficits in aged mice

Ying-Shing Chan, Xiaoqian Hu, Kenneth Lap-Kei Wu, Daisy Kwok-Yan Shum

FENS Forum 2024

ePosterNeuroscience

Effect of high-intensity interval and moderate-intensity continuous training on neuroplasticity, cognition, and sensorimotor performance in aged rats

Jérôme Laurin, Cecile Marcourt, Claudio Rivera, Antoine Langeard, Jean Jacques Temprado

FENS Forum 2024

ePosterNeuroscience

The effect of vitamin D deficiency and unpredictable chronic mild stress on memory and hippocampal plasticity in middle-aged mice

Külli Jaako, Kelli Somelar-Duracz, Monika Jürgenson, Janeli Viil, Alexander Zharkovsky

FENS Forum 2024

ePosterNeuroscience

Establishment of an aged mouse model of unilateral spatial neglect and the impact of aging on symptom severity

Daisuke Ishii, Hironobu Osaki, Atsuko Uchida, Satoshi Yamamoto, Yutaka Kohno

FENS Forum 2024

ePosterNeuroscience

Functional internally tagged Vps10p-domain receptors: A novel tool to investigate their endosomal itineraries, dimerization, and ligand interactions that reveals their potential role in BDNF transport

Marcel Klein, Antonio Virgilio Failla, Guido Hermey

FENS Forum 2024

ePosterNeuroscience

H3K9me3 reduces neuron activation in the aged dentate gyrus

Citlali Suárez Rangel, Aleph Prieto

FENS Forum 2024

ePosterNeuroscience

Impaired spatial coding and weak hyperactivity in the medial entorhinal cortex of aged APP knock-in mice

Gustavo Rodriguez, Eva Rothenberg, Oliver Shetler, Andrew Aoun, Lorenzo Posani, Thomas Tedesco, Stefano Fusi, Abid Hussaini

FENS Forum 2024

ePosterNeuroscience

The inhibition of oligodendrocyte remyelination after spinal cord injury results in cognitive impairment and delayed/inhibited locomotor recovery in aged mice

Sarah Wheeler, Bethany Kondiles, Sohrab Manesh, Jie Liu, Min Lu, Wolfram Tetzlaff

FENS Forum 2024

ePosterNeuroscience

Investigating the acute impact of sweeteners sucralose and Ace-K on ATP production and mitochondrial respiration in the hypothalamic GT1-7 cell line challenged with increased glucose

Joulia Haydar, Claire Fenech, Fabienne Lienard, Basma Abed, Marie-annick Maire, Guillaume Walther, Loic Briand, Corinne Leloup

FENS Forum 2024

ePosterNeuroscience

The Janus faces of nanoparticles at the neurovascular unit: A double-edged sword in neurodegeneration

Giulia Terribile, Sara Di Girolamo, Paolo Spaiardi, Gerardo Biella, Silvia Sesana, Francesca Re, Giulio Alfredo Sancini

FENS Forum 2024

ePosterNeuroscience

Juxtacellular recording and labeling of optotagged orbitofrontal cortex interneurons in freely-moving rats performing a decision-making task

Ricardo Martins Merino, Paul M. Anderson, Romana Hauer, Thomas Klausberger

FENS Forum 2024

ePosterNeuroscience

Lipid droplet pathology in the hippocampus of aged wild-type and perilipin2 knockout mice

Mona Havik, Ingri Ness, Hanne Grindvoll, Knut Tomas Dalen, Cecilie Morland

FENS Forum 2024

ePosterNeuroscience

Memory across generations: Dissecting contextual memory ensembles of young and aged mice

Elif Gizem Kain, Gürsel Caliskan, Oliver Stork

FENS Forum 2024

ePosterNeuroscience

Neurophysiological markers and cognitive predictors of executive function training gains in middle-aged adults

Luka Juras, Ivana Hromatko, Marina Martincevic, Andrea Vranic

FENS Forum 2024

ePosterNeuroscience

Newly synthetic synaptic connector repairs neural circuits damaged by spinal cord injury: recovery from chronic spinal cord injury.

FENS Forum 2024

ePosterNeuroscience

Non-linear temporal effects of social isolation on behavioral dimensions in aged male and female C57BL/6J mice

Daniel Alveal, Lydia Giménez-Llort

FENS Forum 2024

ePosterNeuroscience

The Pgb1 locus controls polyglucosan aggregation in aged mouse hippocampal astrocytes without impacting cognitive function

Alicia Gómez-Pascual, Dow Michael Glikman, Hui Xin Ng, James E. Tomkins, Lu Lu, Ying Xu, David G. Ashbrook, Catherine Kaczorowski, Gerd Kempermann, John Killmar, Khyobeni Mozhui, Ruedi Aebersold, Evan G. Williams, Rob W. Williams, Rupert W. Overall, Mathias Jucker, Dennis E. M. Bakker

FENS Forum 2024

ePosterNeuroscience

Precise spatiotemporal photorelease of a systemically administered caged nicotine agonist in freely moving mice

Nicolas Guyon, Joachim Jehl, Sabrina Djillali Bloufa, Yasmine Layadi, Nelson Rebola, Philippe Faure, Graham Ellis-Davies, Alexandre Mourot

FENS Forum 2024

ePosterNeuroscience

Predictive processing of tactile sensory information in mice engaged in a locomotion task

Max Chalabi, Timothé Jost-Mousseau, Daniel E Shulz, Isabelle Ferezou

FENS Forum 2024

ePosterNeuroscience

Prolonged enhancement of spinal cord neuron activity by synaptic input from sensory neurons in reconstructed sensory-spinal cord network in vitro

Yuki Miyahara, Shimba Kenta, Kotani Kiyoshi, Jimbo Yasuhiko

FENS Forum 2024

ePosterNeuroscience

Sex-dependent effects of voluntary physical exercise on object recognition memory restoration after traumatic brain injury in middle-aged rats

David Costa, Meritxell Torras-Garcia, Odette Estrella, Isabel Portell-Cortés, Gemma Manich, Beatriz Almolda, Berta González, Margalida Coll-Andreu

FENS Forum 2024

ePosterNeuroscience

Single-cell transcriptomic profiles of the ventral hippocampus in response to prolonged chronic stress and antidepressant action

Benedetta Bigio, Shofiul Azam, Neelu John, Yotam Sagi, Chaitan Khosla, Carla Nasca

FENS Forum 2024

ePosterNeuroscience

A new transgenic mouse model for functional tracing of circulation via albumin-tagged fluorescent probes

Marta Vittani, Xiaowen Wang, Ashley Bomin Lee, Yuichi Hiraoka, Ayumu Konno, Philip Alexander Gade Knak, Peter Kusk, Masaki Nagao, Miho Terunuma, Hirokazu Hirai, Maiken Nedergaard, Kohichi Tanaka, Hajime Hirase

FENS Forum 2024

ePosterNeuroscience

Transplanted rat embryonic neural progenitor cells form integrated brain-like tissue in young and aged host environment

Gretchen Greene, Nikorn Pothayee, Jahandar Jahanipour, Dragan Maric, Alan Koretsky

FENS Forum 2024

ePosterNeuroscience

40 Hz visual and auditory entrainment increases EEG alpha activity and improves cognitive functions of middle-aged healthy controls

Bahar Güntekin, Sümeyye Özdemir, İrem Yemeniciler, Ayşenur Akan, Furkan Erdal, Burcu Bölükbaş, Rümeysa Duygun, Yasin Yıldırım, Buse Kuloğlu, Harun Yırıkoğulları, Simay Alptekin, Esra Ünsal, Elif Bingöl, Reveha Attila, Ebru Yıldırım, Tuba Aktürk, Esra Dalmızrak, Lütfü Hanoğlu, Nesrin Helvacı Yılmaz, Berke İşler, Mehmet Kemal Özdemir

FENS Forum 2024

ePosterNeuroscience

Western diet administration in aged mice results in sex-dependent cognitive and metabolic dysfunction: Preventive role of rosmarinic acid

Letizia Giona, Chiara Musillo, Michael Ristow, Kim Zarse, Karsten Siems, Sabrina Tait, Francesca Cirulli, Alessandra Berry

FENS Forum 2024

GED coverage

84 items

Seminar50
ePoster33
Conference1
Domain spotlight

Explore how GED research is advancing inside Neuro.

Visit domain