Latest

SeminarNeuroscience

NOTE: DUE TO A CYBER ATTACK OUR UNIVERSITY WEB SYSTEM IS SHUT DOWN - TALK WILL BE RESCHEDULED

Susanne Schoch McGovern
Universität Bonn
Jun 7, 2023

The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output and how neurons are integrated in the surrounding neuronal network. Accordingly, neurons with aberrant morphology have been associated with neurological disorders. Dysmorphic, enlarged neurons are, for example, a hallmark of focal epileptogenic lesions like focal cortical dysplasia (FCDIIb) and gangliogliomas (GG). However, the regulatory mechanisms governing the development of dendrites are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. Nevertheless, its function in neurons is unknown. We found that during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ 3rd, order dendrites both in cultured neurons and living mice. Moreover, SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown causes a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, while excitatory neurotransmission is unaffected. This mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations exhibit significant loss of SLK expression. To uncover the signaling cascades underlying the action of SLK, we combined phosphoproteomics, protein interaction screens and single cell RNA seq. Overall, our data identifies SLK as a key regulator of both dendritic complexity during development and of inhibitory synapse maintenance.

SeminarNeuroscienceRecording

More than a beast growing in a passive brain: excitation and inhibition drive epilepsy and glioma progression

Gilles Huberfeld
Hôpital Fondation Adolphe de Rothschild
Apr 12, 2023

Gliomas are brain tumors formed by networks of connected tumor cells, nested in and interacting with neuronal networks. Neuronal activities interfere with tumor growth and occurrence of seizures affects glioma prognosis, while the developing tumor triggers seizures in the infiltrated cortex. Oncometabolites produced by tumor cells and neurotransmitters affect both the generation of epileptic activities by neurons and the growth of glioma cells through synaptic-related mechanisms, involving both GABAergic / Chloride pathways and glutamatergic signaling. From a clinical sight, epilepsy occurrence is beneficial to glioma prognosis but growing tumors are epileptogenic, which constitutes a paradox. This lecture will review how inhibitory and excitatory signaling drives glioma growth and how epileptic and oncological processes are interfering, with a special focus on the human brain.

SeminarNeuroscience

Neuron-glial interactions in health and disease: from cognition to cancer

Michelle Monje
Stanford Medicine
Mar 14, 2023

In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.

SeminarNeuroscience

Malignant synaptic plasticity in pediatric high-grade gliomas

Kathryn Taylor
Stanford
May 25, 2022

Pediatric high-grade gliomas (pHGG) are a devastating group of diseases that urgently require novel therapeutic options. We have previously demonstrated that pHGGs directly synapse onto neurons and the subsequent tumor cell depolarization, mediated by calcium-permeable AMPA channels, promotes their proliferation. The regulatory mechanisms governing these postsynaptic connections are unknown. Here, we investigated the role of BDNF-TrkB signaling in modulating the plasticity of the malignant synapse. BDNF ligand activation of its canonical receptor, TrkB (which is encoded for by the gene NTRK2), has been shown to be one important modulator of synaptic regulation in the normal setting. Electrophysiological recordings of glioma cell membrane properties, in response to acute neurotransmitter stimulation, demonstrate in an inward current resembling AMPA receptor (AMPAR) mediated excitatory neurotransmission. Extracellular BDNF increases the amplitude of this glutamate-induced tumor cell depolarization and this effect is abrogated in NTRK2 knockout glioma cells. Upon examining tumor cell excitability using in situ calcium imaging, we found that BDNF increases the intensity of glutamate-evoked calcium transients in GCaMP6s expressing glioma cells. Western blot analysis indicates the tumors AMPAR properties are altered downstream of BDNF induced TrkB activation in glioma. Cell membrane protein capture (via biotinylation) and live imaging of pH sensitive GFP-tagged AMPAR subunits demonstrate an increase of calcium permeable channels at the tumors postsynaptic membrane in response to BDNF. We find that BDNF-TrkB signaling promotes neuron-to-glioma synaptogenesis as measured by high-resolution confocal and electron microscopy in culture and tumor xenografts. Our analysis of published pHGG transcriptomic datasets, together with brain slice conditioned medium experiments in culture, indicates the tumor microenvironment as the chief source of BDNF ligand. Disruption of the BDNF-TrkB pathway in patient-derived orthotopic glioma xenograft models, both genetically and pharmacologically, results in an increased overall survival and reduced tumor proliferation rate. These findings suggest that gliomas leverage normal mechanisms of plasticity to modulate the excitatory channels involved in synaptic neurotransmission and they reveal the potential to target the regulatory components of glioma circuit dynamics as a therapeutic strategy for these lethal cancers.

SeminarNeuroscienceRecording

Sparks, flames, and inferno: epileptogenesis in the glioblastoma microenvironment

Jeff Noebels
Baylor College of Medicine
Oct 7, 2020

Glioblastoma cells trigger pharmacoresistant seizures that may promote tumor growth and diminish the quality of remaining life. To define the relationship between growth of glial tumors and their neuronal microenvironment, and to identify genomic biomarkers and mechanisms that may point to better prognosis and treatment of drug resistant epilepsy in brain cancer, we are analyzing a new generation of genetically defined CRISPR/in utero electroporation inborn glioblastoma (GBM) tumor models engineered in mice. The molecular pathophysiology of glioblastoma cells and surrounding neurons and untransformed astrocytes are compared at serial stages of tumor development. Initial studies reveal that epileptiform EEG spiking is a very early and reliable preclinical signature of GBM expansion in these mice, followed by rapidly progressive seizures and death within weeks. FACS-sorted transcriptomic analysis of cortical astrocytes reveals the expansion of a subgroup enriched in pro-synaptogenic genes that may drive hyperexcitability, a novel mechanism of epileptogenesis. Using a prototypical GBM IUE model, we systematically define and correlate the earliest appearance of cortical hyperexcitability with progressive cortical tumor cell invasion, including spontaneous episodes of spreading cortical depolarization, innate inflammation, and xCT upregulation in the peritumoral microenvironment. Blocking this glutamate exporter reduces seizure load. We show that the host genome contributes to seizure risk by generating tumors in a monogenic deletion strain (MapT/tau -/-) that raises cortical seizure threshold. We also show that the tumor variant profile determines epilepsy risk. Our genetic dissection approach sets the stage to broadly explore the developmental biology of personalized tumor/host interactions in mice engineered with novel human tumor mutations in specified glial cell lineages.

ePosterNeuroscience

3-Photon in vivo imaging reveals breakdown of microglia surveillance upon glioma invasion in the corpus callosum

Felix Nebeling, Falko Fuhrmann, Manuel Mittag, A Deli, Miriam Stork, Melanie Clements, Claudia Garcia Diaz, Simona Parrinello, Paolo Salomoni, Ulrich Herrlinger, Martin Fuhrmann

FENS Forum 2024

ePosterNeuroscience

Computer vision and image processing applications on astrocyte-glioma interactions in 3D cell culture

Banu Erdem, Nilüfar Ismayilzada, Gökhan Bora Esmer, Emel Sokullu

FENS Forum 2024

ePosterNeuroscience

Functional and anatomical modifications of peritumoral tissue that occur along with glioma progression

Elisabetta Mori, Cristina Spalletti, Sabrin Haddad, Marta Scalera, Marco Mainardi, Daniele Cangi, Vinoshene Pillai, Elena Parmigiani, Silvia Landi, Matteo Caleo, Eleonora Vannini

FENS Forum 2024

ePosterNeuroscience

Functional 3D in vitro coculture model for assessing human neuro-glioma interactions

Nanna Förster, Lotta Isosaari, Oskari Kulta, Oona Junnila, Valtteri Vuolanto, Marjukka Pollari, Kirsi Rautajoki, Susanna Narkilahti

FENS Forum 2024

ePosterNeuroscience

Good cells gone bad: The role of SorLA in shaping pro-tumorigenic properties of microglia during glioma progression

Paulina Kaminska, Magda Bakun, Salwador Cyranowski, Bozena Kaminska, Michal Dadlez, Anna R. Malik

FENS Forum 2024

ePosterNeuroscience

Histone H3 variants are associated with distinctive glioma entities

Luis M. Valor, Anabel Garcia-Heredia, Estefania Rojas, Artemio Paya, Luna Guerra-Nuñez, Paula Martin-Climent, Inmaculada Catalina-Fernández, Irati Hervas-Corpion, Jorge Navarro-Calvo, Pablo Gonzalez-Lopez, Irene Iglesias-Lozano, Jose L. Gil-Salu, Cristina Alenda

FENS Forum 2024

ePosterNeuroscience

ID2-ETS2 axis regulates the transcriptional acquisition of pro-tumoral microglia phenotype in glioma

Guillermo Vázquez Cabrera, Noémie Roncier, Farah Real Oualit, Martin Škandík, Mireia Cruz De Los Santos, Austeja Baleviciute, Mathilde Cheray, Bertrand Joseph

FENS Forum 2024

ePosterNeuroscience

Investigating the rate of return to work in low-grade glioma patients

Jasmine Kennedy

FENS Forum 2024

ePosterNeuroscience

Mapping social cognition in patients with gliomas: Preoperative and intraoperative insights from fMRI, MEG, and direct electrical stimulation

Lucia Amoruso, Ileana Quiñones, Santiago Gil-Robles, Garazi Bermudez, Iñigo Pomposo, Manuel Carreiras

FENS Forum 2024

ePosterNeuroscience

Myeloid cells coordinately induce glioma cell-intrinsic and -extrinsic pathways for chemoresistance via GP130 signaling

Roland Kälin, Jiying Cheng, Min Li, Edyta Motta, Deivi Barci, Wangyang Song, Ding Zhou, Gen Li, Brian D. Vaillant, Hiroshi Katayama, Krishna P. L. B Bhat, Charlotte Flüh, Rainer Glass

FENS Forum 2024

ePosterNeuroscience

WNT pathway's key regulators display different promoter methylation frequencies in gliomas

Nives Pećina-Šlaus, Anja Kafka, Anja Bukovac, Reno Hrašćan

FENS Forum 2024

ePosterNeuroscience

Targeting clusterin for therapeutic intervention in gliomas

Pinky Sultana, Ondrej Honc, Zdenek Hodny, Jiri Novotny

FENS Forum 2024

ePosterNeuroscience

Tumor tissue metabolomics informs metabolic reprogramming in IDH wild-type gliomas

Fernanda Monedeiro, Kariem Mahdy-Ali, Julia Bandres-Meriz, Adelheid Wöhrer, Elmar Zügner, Stefanie Stanzer, Christoph Magnes, Tadeja Urbanic-Purkart, Barbara Prietl, Amin El-Heliebi

FENS Forum 2024

ePosterNeuroscience

Uncovering transcriptome-wide lncRNA methylation and expression patterns in human glioma

Rugile Dragunaite, Giedrius Steponaitis, Rytis Stakaitis, Daina Skiriute

FENS Forum 2024

glioma coverage

19 items

ePoster14
Seminar5
Domain spotlight

Explore how glioma research is advancing inside Neuro.

Visit domain