interpretability
Latest
LLMs and Human Language Processing
This webinar convened researchers at the intersection of Artificial Intelligence and Neuroscience to investigate how large language models (LLMs) can serve as valuable “model organisms” for understanding human language processing. Presenters showcased evidence that brain recordings (fMRI, MEG, ECoG) acquired while participants read or listened to unconstrained speech can be predicted by representations extracted from state-of-the-art text- and speech-based LLMs. In particular, text-based LLMs tend to align better with higher-level language regions, capturing more semantic aspects, while speech-based LLMs excel at explaining early auditory cortical responses. However, purely low-level features can drive part of these alignments, complicating interpretations. New methods, including perturbation analyses, highlight which linguistic variables matter for each cortical area and time scale. Further, “brain tuning” of LLMs—fine-tuning on measured neural signals—can improve semantic representations and downstream language tasks. Despite open questions about interpretability and exact neural mechanisms, these results demonstrate that LLMs provide a promising framework for probing the computations underlying human language comprehension and production at multiple spatiotemporal scales.
Probing neural population dynamics with recurrent neural networks
Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics with unprecedented detail. However, the sheer volume of data and its dynamical complexity are major barriers to uncovering and interpreting these dynamics. I will present latent factor analysis via dynamical systems, a sequential autoencoding approach that enables inference of dynamics from neuronal population spiking activity on single trials and millisecond timescales. I will also discuss recent adaptations of the method to uncover dynamics from neural activity recorded via 2P Calcium imaging. Finally, time permitting, I will mention recent efforts to improve the interpretability of deep-learning based dynamical systems models.
NMC4 Short Talk: Hypothesis-neutral response-optimized models of higher-order visual cortex reveal strong semantic selectivity
Modeling neural responses to naturalistic stimuli has been instrumental in advancing our understanding of the visual system. Dominant computational modeling efforts in this direction have been deeply rooted in preconceived hypotheses. In contrast, hypothesis-neutral computational methodologies with minimal apriorism which bring neuroscience data directly to bear on the model development process are likely to be much more flexible and effective in modeling and understanding tuning properties throughout the visual system. In this study, we develop a hypothesis-neutral approach and characterize response selectivity in the human visual cortex exhaustively and systematically via response-optimized deep neural network models. First, we leverage the unprecedented scale and quality of the recently released Natural Scenes Dataset to constrain parametrized neural models of higher-order visual systems and achieve novel predictive precision, in some cases, significantly outperforming the predictive success of state-of-the-art task-optimized models. Next, we ask what kinds of functional properties emerge spontaneously in these response-optimized models? We examine trained networks through structural ( feature visualizations) as well as functional analysis (feature verbalizations) by running `virtual' fMRI experiments on large-scale probe datasets. Strikingly, despite no category-level supervision, since the models are solely optimized for brain response prediction from scratch, the units in the networks after optimization act as detectors for semantic concepts like `faces' or `words', thereby providing one of the strongest evidences for categorical selectivity in these visual areas. The observed selectivity in model neurons raises another question: are the category-selective units simply functioning as detectors for their preferred category or are they a by-product of a non-category-specific visual processing mechanism? To investigate this, we create selective deprivations in the visual diet of these response-optimized networks and study semantic selectivity in the resulting `deprived' networks, thereby also shedding light on the role of specific visual experiences in shaping neuronal tuning. Together with this new class of data-driven models and novel model interpretability techniques, our study illustrates that DNN models of visual cortex need not be conceived as obscure models with limited explanatory power, rather as powerful, unifying tools for probing the nature of representations and computations in the brain.
Learning the structure and investigating the geometry of complex networks
Networks are widely used as mathematical models of complex systems across many scientific disciplines, and in particular within neuroscience. In this talk, we introduce two aspects of our collaborative research: (1) machine learning and networks, and (2) graph dimensionality. Machine learning and networks. Decades of work have produced a vast corpus of research characterising the topological, combinatorial, statistical and spectral properties of graphs. Each graph property can be thought of as a feature that captures important (and sometimes overlapping) characteristics of a network. We have developed hcga, a framework for highly comparative analysis of graph data sets that computes several thousands of graph features from any given network. Taking inspiration from hctsa, hcga offers a suite of statistical learning and data analysis tools for automated identification and selection of important and interpretable features underpinning the characterisation of graph data sets. We show that hcga outperforms other methodologies (including deep learning) on supervised classification tasks on benchmark data sets whilst retaining the interpretability of network features, which we exemplify on a dataset of neuronal morphologies images. Graph dimensionality. Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogeneities, or to intrinsically discrete systems such as networks. Deviating from approaches based on fractals, here, we present a new framework to define intrinsic notions of dimension on networks, the relative, local and global dimension. We showcase our method on various physical systems.
What does my network learn? Assessing the interpretability of deep learning for neural signals
FENS Forum 2024
interpretability coverage
5 items