interval reproduction
Latest
Neural dynamics underlying temporal inference
Animals possess the ability to effortlessly and precisely time their actions even though information received from the world is often ambiguous and is inadvertently transformed as it passes through the nervous system. With such uncertainty pervading through our nervous systems, we could expect that much of human and animal behavior relies on inference that incorporates an important additional source of information, prior knowledge of the environment. These concepts have long been studied under the framework of Bayesian inference with substantial corroboration over the last decade that human time perception is consistent with such models. We, however, know little about the neural mechanisms that enable Bayesian signatures to emerge in temporal perception. I will present our work on three facets of this problem, how Bayesian estimates are encoded in neural populations, how these estimates are used to generate time intervals, and how prior knowledge for these tasks is acquired and optimized by neural circuits. We trained monkeys to perform an interval reproduction task and found their behavior to be consistent with Bayesian inference. Using insights from electrophysiology and in silico models, we propose a mechanism by which cortical populations encode Bayesian estimates and utilize them to generate time intervals. Thereafter, I will present a circuit model for how temporal priors can be acquired by cerebellar machinery leading to estimates consistent with Bayesian theory. Based on electrophysiology and anatomy experiments in rodents, I will provide some support for this model. Overall, these findings attempt to bridge insights from normative frameworks of Bayesian inference with potential neural implementations for the acquisition, estimation, and production of timing behaviors.
Predictive processing in the macaque frontal cortex during time estimation
According to the theory of predictive processing, expectations modulate neural activity so as to optimize the processing of sensory inputs expected in the current environment. While there is accumulating evidence that the brain indeed operates under this principle, most of the attention has been placed on mechanisms that rely on static coding properties of neurons. The potential contribution of dynamical features, such as those reflected in the evolution of neural population dynamics, has thus far been overlooked. In this talk, I will present evidence for a novel mechanism for predictive processing in the temporal domain which relies on neural population dynamics. I will use recordings from the frontal cortex of macaques trained on a time interval reproduction task and show how neural dynamics can be directly related to animals’ temporal expectations, both in a stationary environment and during learning.
interval reproduction coverage
2 items