intracranial recordings
Latest
Localisation of Seizure Onset Zone in Epilepsy Using Time Series Analysis of Intracranial Data
There are over 30 million people with drug-resistant epilepsy worldwide. When neuroimaging and non-invasive neural recordings fail to localise seizure onset zones (SOZ), intracranial recordings become the best chance for localisation and seizure-freedom in those patients. However, intracranial neural activities remain hard to visually discriminate across recording channels, which limits the success of intracranial visual investigations. In this presentation, I present methods which quantify intracranial neural time series and combine them with explainable machine learning algorithms to localise the SOZ in the epileptic brain. I present the potentials and limitations of our methods in the localisation of SOZ in epilepsy providing insights for future research in this area.
Unravelling bistable perception from human intracranial recordings
Discovering dynamical patterns from high fidelity timeseries is typically a challenging task. In this talk, the timeseries data consist of neural recordings taken from the auditory cortex of human subjects who listened to sequences of repeated triplets of tones and reported their perception by pressing a button. Subjects reported spontaneous alternations between two auditory perceptual states (1-stream and 2-streams). We discuss a data-driven method, which leverages time-delayed coordinates, diffusion maps, and dynamic mode decomposition, to identify neural features that correlated with subject-reported switching between perceptual states.
Deciphering the Dynamics of the Unconscious Brain Under General Anesthesia
General anesthesia is a drug-induced, reversible condition comprised of five behavioral states: unconsciousness, amnesia (loss of memory), antinociception (loss of pain sensation), akinesia (immobility), and hemodynamic stability with control of the stress response. Our work shows that a primary mechanism through which anesthetics create these altered states of arousal is by initiating and maintaining highly structured oscillations. These oscillations impair communication among brain regions. We illustrate this effect by presenting findings from our human studies of general anesthesia using high-density EEG recordings and intracranial recordings. These studies have allowed us to give a detailed characterization of the neurophysiology of loss and recovery of consciousness due to propofol. We show how these dynamics change systematically with different anesthetic classes and with age. As a consequence, we have developed a principled, neuroscience-based paradigm for using the EEG to monitor the brain states of patients receiving general anesthesia. We demonstrate that the state of general anesthesia can be rapidly reversed by activating specific brain circuits. Finally, we demonstrate that the state of general anesthesia can be controlled using closed loop feedback control systems. The success of our research has depended critically on tight coupling of experiments, signal processing research and mathematical modeling.
Intracranial recordings uncover neuronal dynamics of multidimensional reinforcement learning.
COSYNE 2025
intracranial recordings coverage
4 items