Locusts
locusts
Latest
The Geometry of Decision-Making
Running, swimming, or flying through the world, animals are constantly making decisions while on the move—decisions that allow them to choose where to eat, where to hide, and with whom to associate. Despite this most studies have considered only on the outcome of, and time taken to make, decisions. Motion is, however, crucial in terms of how space is represented by organisms during spatial decision-making. Employing a range of new technologies, including automated tracking, computational reconstruction of sensory information, and immersive ‘holographic’ virtual reality (VR) for animals, experiments with fruit flies, locusts and zebrafish (representing aerial, terrestrial and aquatic locomotion, respectively), I will demonstrate that this time-varying representation results in the emergence of new and fundamental geometric principles that considerably impact decision-making. Specifically, we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (‘critical’) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. Due to the critical nature of these transitions (and the corresponding increase in ‘susceptibility’) even noisy brains are extremely sensitive to very small differences between remaining options (e.g., a very small difference in neuronal activity being in “favor” of one option) near these locations in space-time. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.
Three levels of variability in the collective behavior of locusts
Many aspects of collective behavior depend on interactions between conspecifics. This is especially true for the collective motion of locusts, which swarm in millions while maintaining synchrony among individuals. However, whether locusts share and maintain the same socio-behavioral patterns – between groups, individuals and situations – remains an open question. Studying marching locusts under lab conditions, we found that (1) different groups behave differently; (2) locusts within a group homogenize their behavior; and (3) individuals have different socio-behavioral tendencies and context-dependent states. These variability levels suggest that behavioral differences within and among individuals exist, affect others, and shape the collective behavior of the entire group.
locusts coverage
2 items