Mosquito
mosquito
Latest
Optogenetic silencing of synaptic transmission with a mosquito rhodopsin
Long-range projections link distant circuits in the brain, allowing efficient transfer of information between regions and synchronization of distributed patterns of neural activity. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity, and optogenetic tools appear to be an obvious choice for such experiments. However, we and others have previously shown that commonly-used inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals. In my talk, I will present a new solution to this problem: a targeting-enhanced mosquito homologue of the vertebrate encephalopsin (eOPN3), which upon activation can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. The efficacy of eOPN3 in suppressing presynaptic release opens new avenues for functional interrogation of long-range neuronal circuits in vivo.
Decoding Mosquito Attraction to Human Scent
Parallel ascending spinal pathways for affective touch and pain
Each day we experience myriad somatosensory stimuli: hugs from loved ones, warm showers, a mosquito bite, and sore muscles after a workout. These tactile, thermal, itch, and nociceptive signals are detected by peripheral sensory neuron terminals distributed throughout our body, propagated into the spinal cord, and then transmitted to the brain through ascending spinal pathways. Primary sensory neurons that detect a wide range of somatosensory stimuli have been identified and characterized. In contrast, very little is known about how peripheral signals are integrated and processed within the spinal cord and conveyed to the brain to generate somatosensory perception and behavioral responses. We tackled this question by developing new mouse genetic tools to define projection neuron (PN) subsets of the anterolateral pathway, a major ascending spinal cord pathway, and combining these new tools with advanced anatomical, physiological, and behavioral approaches. We found that Gpr83+ PNs, a newly identified subset of spinal cord output neurons, and Tacr1+ PNs are largely non-overlapping populations that innervate distinct sets of subnuclei within the lateral parabrachial nucleus (PBNL) of the pons in a zonally segregated manner. In addition, Gpr83+ PNs are highly sensitive to cutaneous mechanical stimuli, receive strong synaptic inputs from primary mechanosensory neurons, and convey tactile information bilaterally to the PBNL in a non-topographically organized manner. Remarkably, Gpr83+ mechanosensory limb of the anterolateral pathway controls behaviors associated with different hedonic values (appetitive or aversive) in a scalable manner. This is the first study to identify a dedicated spinal cord output pathway that conveys affective touch signals to the brain and to define parallel ascending circuit modules that cooperate to convey tactile, thermal and noxious cutaneous signals from the spinal cord to the brain. This study has also revealed exciting new therapeutic opportunities for developing treatments for neurological disorders associated with pain and affective touch.
A robust neural code for human odor in the Aedes aegpyti mosquito brain
A globally invasive form of the mosquito Aedes aegypti has evolved to specialize in biting humans, making it an efficient vector of dengue, yellow fever, Zika, and chikungunya. Host-seeking females identify humans primarily by smell, strongly preferring human odour over the odor of non-human animals. Exactly how they discriminate, however, is unclear. Human and animal odors are complex blends that share most of the same chemical components, presenting an interesting challenge in sensory coding. I will talk about recent work from the lab showing that (1) human and animal blends can be distinguished by the relative concentration of a diverse array of compounds and that (2) these complex chemical differences translate into a neural code for human odor that involves as few as two to three olfactory glomeruli in the mosquito brain. Our work demonstrates how organisms may evolve to discriminate complex odor stimuli of special biological relevance with a surprisingly simple combinatorial code and reveals novel targets for the design of next-generation mosquito control strategies.
mosquito coverage
4 items