mRNA
Latest
Expanding mechanisms and therapeutic targets for neurodegenerative disease
A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.
Spatio-temporal Regulation of Gene Expression in Neurons: Insights from Imaging mRNAs Live in Action
Astrocyte reprogramming / activation and brain homeostasis
Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.
mRNA transport, trafficking, localization
In the second of this year’s Brain Prize webinars, Rob Singer (Einstein Medical College, USA), Florence Besse (Institut de Biologie Valrose, France) and Jennifer Lippincott-Schwartz (Janelia Farm Research Campus, USA) will present their work on mRNA transport, trafficking, and localization. Each speaker will present for 25 minutes, and the webinar will conclude with an open discussion. The webinar will be moderated by the winners of the 2023 Brain Prize, Michael Greenberg, Erin Schuman and Christine Holt.
The Brain Prize winner's webinar
In 2023, Michael Greenberg (Harvard, USA), Erin Schuman (Max Planck Institute for Brain Research, Germany) and Christine Holt (University of Cambridge, UK) were awarded The Brain Prize for their pioneering work on activity-dependent gene transcription and local mRNA translation. In this webinar, all 3 Brain Prize winners will present their work. Each speaker will present for 25 minutes and the webinar will conclude with an open discussion. The webinar will be moderated by Kelsey Martin from the Simons Foundation.
Neurobiological significance of alternative modes of mRNA translation in astrocytes
Harnessing mRNA metabolism for the development of precision gene therapy
Dysregulated Translation in Fragile X Syndrome
Translation at the Synapse
The complex morphology of neurons, with synapses located hundreds of microns from the cell body, necessitates the localization of important cell biological machines, including ribosomes, within dendrites and axons. Local translation of mRNAs is important for the function and plasticity of synapses. Using advanced sequencing and imaging techniques we have updated our understanding of the local transcriptome and identified the local translatome- identifying over 800 transcripts for which local translation is the dominant source of protein. In addition, we have explored the unique mechanisms neurons use to meet protein demands at synapses, identifying surprising features of neuronal and synaptic protein synthesis.
MicroRNAs as targets in the epilepsies: hits, misses and complexes
MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.
A transcriptomic axis predicts state modulation of cortical interneurons
Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes, but it is not known whether these subtypes have correspondingly diverse activity patterns in the living brain. We show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, but that this diversity is organized by a single factor: position along their main axis of transcriptomic variation. We combined in vivo 2-photon calcium imaging of mouse V1 with a novel transcriptomic method to identify mRNAs for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 Subclasses, 11 Types, and 35 Subtypes using previously-defined transcriptomic clusters. Responses to visual stimuli differed significantly only across Subclasses, suppressing cells in the Sncg Subclass while driving cells in the other Subclasses. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory Subtypes that fired more in resting, oscillatory brain states have less axon in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro and express more inhibitory cholinergic receptors. Subtypes firing more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 Subtypes shape state-dependent cortical processing.
Neuronal RNA signatures: Regulation and Function
Neurons are uniquely complex cells characterized by the expression of RNA sequences that are found in no other cell type: neuron-specific mRNA splice isoforms, circular RNAs, microRNAs, and ultra-long 3’UTRs. Although relatively little is known about how these neuronal RNA signatures control neuronal development and function, the importance of RNA-directed regulation in the brain is exemplified by its implication in neurological diseases. Our goal is to gain mechanistic and functional insight of the neuron-specific RNA landscape that drives neural function in health and disease.
A brain circuit for curiosity
Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.
Innate immune response in brain pathologies: Lost in translation?
Inflammation is a key component of the innate immune response. Primarily designed to remove noxious agents and limit their detrimental effects, the prolonged and/or inappropriately scaled innate immune response may be detrimental to the host and lead to a chronic disease. Indeed, there is increasing evidence suggesting that a chronic deregulation of immunity may represent one of the key elements in the pathobiology of many brain disorders. Microglia are the principal immune cells of the brain. The consensus today is that once activated microglia/macrophages can acquire a wide repertoire of profiles ranging from the classical pro-inflammatory to alternative and protective phenotypes. Recently, we described a novel ribosome-based regulatory mechanism/checkpoint that controls innate immune gene translation and microglial activation involving RNA binding protein SRSF3. Here we will discuss the implications of SRSF3 and other endogenous immune regulators in deregulation of immunity observed in different models of brain pathologies. Furthermore, we will discuss whether targeting SRSF3 and mRNA translation may open novel avenues for therapeutic modulation of immune response in the brain.
The dynamic behaviour of mRNAs and splicing proteins in developing axons
Recent findings have revealed that mRNAs have a much more dynamic behaviour than initially described. This is particularly true in neurons, where mRNAs are transported to specific axonal and dendritic areas. The seminar will present our most recent findings unveiling complex mRNA processing dynamics driven by splicing proteins in developing axons.
Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy
Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.
Virus-like intercellular communication in the nervous system
The neuronal gene Arc is essential for long-lasting information storage in the mammalian brain and mediates various forms of synaptic plasticity. We recently discovered that Arc self-assembles into virus-like capsids that encapsulate RNA. Endogenous Arc protein is released from neurons in extracellular vesicles that mediate the transfer of Arc mRNA into new target cells. Evolutionary analysis indicates that Arc is derived from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestral to retroviruses such as HIV. These findings suggest that Gag retroelements have been repurposed during evolution to mediate intercellular communication in the nervous system that may underlie cognition and memory.
Molecular Biology of the Fragile X Syndrome
Silencing of FMR1 and loss of its gene product, FMRP, results in fragile X syndrome (FXS). FMRP binds brain mRNAs and inhibits polypeptide elongation. Using ribosome profiling of the hippocampus, we find that ribosome footprint levels in Fmr1-deficient tissue mostly reflect changes in RNA abundance. Profiling over a time course of ribosome runoff in wild-type tissue reveals a wide range of ribosome translocation rates; on many mRNAs, the ribosomes are stalled. Sucrose gradient ultracentrifugation of hippocampal slices after ribosome runoff reveals that FMRP co-sediments with stalled ribosomes, and its loss results in decline of ribosome stalling on specific mRNAs. One such mRNA encodes SETD2, a lysine methyltransferase that catalyzes H3K36me3. Chromatin immunoprecipitation sequencing (ChIP-seq) demonstrates that loss of FMRP alters the deployment of this histone mark. H3K36me3 is associated with alternative pre-RNA processing, which we find occurs in an FMRP-dependent manner on transcripts linked to neural function and autism spectrum disorders.
Characterising the role of Gadd45ɑ in mRNA stability in the context of synaptic plasticity
FENS Forum 2024
Dynamic endosome-mRNA association drives compartment-specific mRNA localization in neurons
FENS Forum 2024
Heterogeneous and specific synaptic localization of different mRNAs in neuronal dendrites
FENS Forum 2024
Impaired subcellular localization of synaptic mRNAs underlies connectivity deficits in schizophrenia
FENS Forum 2024
Long poly(A) tails of neuropeptide mRNAs originate in the cytoplasm of neurosecretory cells
FENS Forum 2024
Protective effect of melatonin on diabetic-induced alterations in the expression of NMDA receptor subunits and CaMKII mRNA in the prefrontal cortex
FENS Forum 2024
Repetitive transcranial magnetic stimulation induced changes of N6-methyladenosine modified mRNAs
FENS Forum 2024
Whole-brain mRNA imaging unveils the dynamics of neuroinflammation after stroke
FENS Forum 2024
mRNA coverage
26 items