TopicNeuro

neural circuit

50 Seminars40 ePosters

Latest

SeminarNeuroscience

AutoMIND: Deep inverse models for revealing neural circuit invariances

Richard Gao
Goethe University
Oct 2, 2025
SeminarNeuroscience

Low intensity rTMS: age dependent effects, and mechanisms underlying neural plasticity

Ann Lohof
Sorbonne Université, Institut de Biologie Paris Seine
Sep 19, 2025

Neuroplasticity is essential for the establishment and strengthening of neural circuits. Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical excitability and shows promise in the treatment of some neurological disorders. Low intensity magnetic stimulation (LI-rTMS), which does not directly elicit action potentials in the stimulated neurons, have also shown some therapeutic effects, and it is important to determine the biological mechanisms underlying the effects of these low intensity magnetic fields, such as would occur in the regions surrounding the central high-intensity focus of rTMS. Our team has used a focal low-intensity (10mT) magnetic stimulation approach to address some of these questions and to identify cellular mechanisms. I will present several studies from our laboratory, addressing (1) effects of LIrTMS on neuronal activity and excitability ; and (2) neuronal morphology and post-lesion repair. The ensemble of our results indicate that the effects of LI-rTMS depend upon the stimulation pattern, the age of the animal, and the presence of cellular magnetoreceptors.

SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 13, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

Neurobiological constraints on learning: bug or feature?

Cian O’Donell
Ulster University
Jun 11, 2025

Understanding how brains learn requires bridging evidence across scales—from behaviour and neural circuits to cells, synapses, and molecules. In our work, we use computational modelling and data analysis to explore how the physical properties of neurons and neural circuits constrain learning. These include limits imposed by brain wiring, energy availability, molecular noise, and the 3D structure of dendritic spines. In this talk I will describe one such project testing if wiring motifs from fly brain connectomes can improve performance of reservoir computers, a type of recurrent neural network. The hope is that these insights into brain learning will lead to improved learning algorithms for artificial systems.

SeminarNeuroscience

Analyzing Network-Level Brain Processing and Plasticity Using Molecular Neuroimaging

Alan Jasanoff
Massachusetts Institute of Technology
Jan 28, 2025

Behavior and cognition depend on the integrated action of neural structures and populations distributed throughout the brain. We recently developed a set of molecular imaging tools that enable multiregional processing and plasticity in neural networks to be studied at a brain-wide scale in rodents and nonhuman primates. Here we will describe how a novel genetically encoded activity reporter enables information flow in virally labeled neural circuitry to be monitored by fMRI. Using the reporter to perform functional imaging of synaptically defined neural populations in the rat somatosensory system, we show how activity is transformed within brain regions to yield characteristics specific to distinct output projections. We also show how this approach enables regional activity to be modeled in terms of inputs, in a paradigm that we are extending to address circuit-level origins of functional specialization in marmoset brains. In the second part of the talk, we will discuss how another genetic tool for MRI enables systematic studies of the relationship between anatomical and functional connectivity in the mouse brain. We show that variations in physical and functional connectivity can be dissociated both across individual subjects and over experience. We also use the tool to examine brain-wide relationships between plasticity and activity during an opioid treatment. This work demonstrates the possibility of studying diverse brain-wide processing phenomena using molecular neuroimaging.

SeminarNeuroscience

Mouse Motor Cortex Circuits and Roles in Oromanual Behavior

Gordon Shepherd
Northwestern University
Jan 14, 2025

I’m interested in structure-function relationships in neural circuits and behavior, with a focus on motor and somatosensory areas of the mouse’s cortex involved in controlling forelimb movements. In one line of investigation, we take a bottom-up, cellularly oriented approach and use optogenetics, electrophysiology, and related slice-based methods to dissect cell-type-specific circuits of corticospinal and other neurons in forelimb motor cortex. In another, we take a top-down ethologically oriented approach and analyze the kinematics and cortical correlates of “oromanual” dexterity as mice handle food. I'll discuss recent progress on both fronts.

SeminarNeuroscience

The Brain Prize winners' webinar

Larry Abbott, Haim Sompolinsky, Terry Sejnowski
Columbia University; Harvard University / Hebrew University; Salk Institute
Nov 30, 2024

This webinar brings together three leaders in theoretical and computational neuroscience—Larry Abbott, Haim Sompolinsky, and Terry Sejnowski—to discuss how neural circuits generate fundamental aspects of the mind. Abbott illustrates mechanisms in electric fish that differentiate self-generated electric signals from external sensory cues, showing how predictive plasticity and two-stage signal cancellation mediate a sense of self. Sompolinsky explores attractor networks, revealing how discrete and continuous attractors can stabilize activity patterns, enable working memory, and incorporate chaotic dynamics underlying spontaneous behaviors. He further highlights the concept of object manifolds in high-level sensory representations and raises open questions on integrating connectomics with theoretical frameworks. Sejnowski bridges these motifs with modern artificial intelligence, demonstrating how large-scale neural networks capture language structures through distributed representations that parallel biological coding. Together, their presentations emphasize the synergy between empirical data, computational modeling, and connectomics in explaining the neural basis of cognition—offering insights into perception, memory, language, and the emergence of mind-like processes.

SeminarNeuroscience

Learning and Memory

Nicolas Brunel, Ashok Litwin-Kumar, Julijana Gjeorgieva
Duke University; Columbia University; Technical University Munich
Nov 29, 2024

This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.

SeminarNeuroscience

Untitled Seminar

Alberto Cruz-Martín
Boston University
Oct 16, 2024
SeminarNeuroscience

The multi-phase plasticity supporting winner effect

Dayu Lin
NYU Neuroscience Institute, New York, USA
May 15, 2024

Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.

SeminarNeuroscienceRecording

Combined electrophysiological and optical recording of multi-scale neural circuit dynamics

Chris Lewis
University of Zurich
Apr 30, 2024

This webinar will showcase new approaches for electrophysiological recordings using our silicon neural probes and surface arrays combined with diverse optical methods such as wide-field or 2-photon imaging, fiber photometry, and optogenetic perturbations in awake, behaving mice. Multi-modal recording of single units and local field potentials across cortex, hippocampus and thalamus alongside calcium activity via GCaMP6F in cortical neurons in triple-transgenic animals or in hippocampal astrocytes via viral transduction are brought to bear to reveal hitherto inaccessible and under-appreciated aspects of coordinated dynamics in the brain.

SeminarNeuroscienceRecording

Blood-brain barrier dysfunction in epilepsy: Time for translation

Alon Friedman
Dalhousie University
Feb 28, 2024

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

SeminarNeuroscience

Neural Circuits that connect Body and Mind

Ivan de Araujo
Max Planck Institute for Biological Cybernetics, Tübingen
Feb 8, 2024
SeminarNeuroscienceRecording

From primate anatomy to human neuroimaging: insights into the circuits underlying psychiatric disease and neuromodulation; Large-scale imaging of neural circuits: towards a microscopic human connectome

Suzanne Haber, PhD & Prof. Anastasia Yendiki, PhD
University of Rochester, USA / Harvard Medical School, USA
Oct 26, 2023

On Thursday, October 26th, we will host Anastasia Yendiki and Suzanne Haber. Anastasia Yendiki, PhD, is an Associate Professor in Radiology at the Harvard Medical School and an Associate Investigator at the Massachusetts General Hospital and Athinoula A. Martinos Center. Suzanne Haber, PhD, is a Professor at the University of Rochester and runs a lab at McLean hospital at Harvard Medical School in Boston. She has received numerous awards for her work on neuroanatomy. Beside her scientific presentation, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

A neuroendocrine circuit that regulates sugar feeding in mated Drosophila melanogaster females

Meghan Laturney
UC Berkeley
Oct 12, 2023
SeminarNeuroscienceRecording

Generating parallel representations of position and identity in the olfactory system

Dana Galili
MRC Laboratory of Molecular Biology
Oct 12, 2023
SeminarNeuroscienceRecording

How fly neurons compute the direction of visual motion

Axel Borst
Max-Planck-Institute for Biological Intelligence
Oct 9, 2023

Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits, involving a comparison of the signals from neighboring photoreceptors over time. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Much progress has been made in recent years in the fruit fly Drosophila melanogaster by genetically targeting individual neuron types to block, activate or record from them. Our results obtained this way demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.

SeminarNeuroscienceRecording

Human and Zebrafish retinal circuits: similarities in day and night

Takeshi Yoshimatsu
University of Washington, St. Louis
Jun 12, 2023
SeminarNeuroscienceRecording

Neural circuits for vision in the natural world

Cris Niell
University of Oregon
May 22, 2023
SeminarNeuroscience

The neural circuits underlying planning and movement

Karel Svoboda
Allen Institute, Seattle, USA
May 11, 2023
SeminarNeuroscienceRecording

The smart image compression algorithm in the retina: a theoretical study of recoding inputs in neural circuits

Gabrielle Gutierrez
Columbia University, New York
Apr 5, 2023

Computation in neural circuits relies on a common set of motifs, including divergence of common inputs to parallel pathways, convergence of multiple inputs to a single neuron, and nonlinearities that select some signals over others. Convergence and circuit nonlinearities, considered individually, can lead to a loss of information about the inputs. Past work has detailed how to optimize nonlinearities and circuit weights to maximize information, but we show that selective nonlinearities, acting together with divergent and convergent circuit structure, can improve information transmission over a purely linear circuit despite the suboptimality of these components individually. These nonlinearities recode the inputs in a manner that preserves the variance among converged inputs. Our results suggest that neural circuits may be doing better than expected without finely tuned weights.

SeminarNeuroscience

Self-perception: mechanosensation and beyond

Wei Zhang
National Natural Science Foundation of China
Apr 4, 2023

Brain-organ communications play a crucial role in maintaining the body's physiological and psychological homeostasis, and are controlled by complex neural and hormonal systems, including the internal mechanosensory organs. However, the progress has been slow due to technical hurdles: the sensory neurons are deeply buried inside the body and are not readily accessible for direct observation, the projection patterns from different organs or body parts are complex rather than converging into dedicate brain regions, the coding principle cannot be directly adapted from that learned from conventional sensory pathways. Our lab apply the pipeline of "biophysics of receptors-cell biology of neurons-functionality of neural circuits-animal behaviors" to explore the molecular and neural mechanisms of self-perception. In the lab, we mainly focus on the following three questions: 1, The molecular and cellular basis for proprioception and interoception. 2, The circuit mechanisms of sensory coding and integration of internal and external information. 3, The function of interoception in regulating behavior homeostasis.

SeminarNeuroscienceRecording

The strongly recurrent regime of cortical networks

David Dahmen
Jülich Research Centre, Germany
Mar 29, 2023

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons. These neurons exhibit highly complex coordination patterns. Where does this complexity stem from? One candidate is the ubiquitous heterogeneity in connectivity of local neural circuits. Studying neural network dynamics in the linearized regime and using tools from statistical field theory of disordered systems, we derive relations between structure and dynamics that are readily applicable to subsampled recordings of neural circuits: Measuring the statistics of pairwise covariances allows us to infer statistical properties of the underlying connectivity. Applying our results to spontaneous activity of macaque motor cortex, we find that the underlying network operates in a strongly recurrent regime. In this regime, network connectivity is highly heterogeneous, as quantified by a large radius of bulk connectivity eigenvalues. Being close to the point of linear instability, this dynamical regime predicts a rich correlation structure, a large dynamical repertoire, long-range interaction patterns, relatively low dimensionality and a sensitive control of neuronal coordination. These predictions are verified in analyses of spontaneous activity of macaque motor cortex and mouse visual cortex. Finally, we show that even microscopic features of connectivity, such as connection motifs, systematically scale up to determine the global organization of activity in neural circuits.

SeminarNeuroscience

Hallucinating mice, dopamine and immunity; towards mechanistic treatment targets for psychosis

Katharina Schmack
Francis Crick Institute, London
Mar 23, 2023

Hallucinations are a core symptom of psychotic disorders and have traditionally been difficult to study biologically. We developed a new behavioral computational approach to measure hallucinations-like perception in humans and mice alike. Using targeted neural circuit manipulations, we identified a causal role for striatal dopamine in mediating hallucination-like perception. Building on this, we currently investigate the neural and immunological upstream regulators of these dopaminergic circuits with the goal to identify new biological treatment targets for psychosis

SeminarNeuroscience

Neuron-glial interactions in health and disease: from cognition to cancer

Michelle Monje
Stanford Medicine
Mar 14, 2023

In the central nervous system, neuronal activity is a critical regulator of development and plasticity. Activity-dependent proliferation of healthy glial progenitors, oligodendrocyte precursor cells (OPCs), and the consequent generation of new oligodendrocytes contributes to adaptive myelination. This plasticity of myelin tunes neural circuit function and contributes to healthy cognition. The robust mitogenic effect of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, suggests that dysregulated or “hijacked” mechanisms of myelin plasticity might similarly promote malignant cell proliferation in this devastating group of brain cancers. Indeed, neuronal activity promotes progression of both high-grade and low-grade glioma subtypes in preclinical models. Crucial mechanisms mediating activity-regulated glioma growth include paracrine secretion of BDNF and the synaptic protein neuroligin-3 (NLGN3). NLGN3 induces multiple oncogenic signaling pathways in the cancer cell, and also promotes glutamatergic synapse formation between neurons and glioma cells. Glioma cells integrate into neural circuits synaptically through neuron-to-glioma synapses, and electrically through potassium-evoked currents that are amplified through gap-junctional coupling between tumor cells This synaptic and electrical integration of glioma into neural circuits is central to tumor progression in preclinical models. Thus, neuron-glial interactions not only modulate neural circuit structure and function in the healthy brain, but paracrine and synaptic neuron-glioma interactions also play important roles in the pathogenesis of glial cancers. The mechanistic parallels between normal and malignant neuron-glial interactions underscores the extent to which mechanisms of neurodevelopment and plasticity are subverted by malignant gliomas, and the importance of understanding the neuroscience of cancer.

SeminarNeuroscience

Neural circuits for body movements

Silvia Arber
University of Basel, Switzerland
Jan 16, 2023
SeminarNeuroscience

How do Astrocytes Sculpt Synaptic Circuits?

Cagla Eroglu
Duke University
Jan 11, 2023
SeminarNeuroscience

From symptoms to circuits in Fragile X syndrome

Carlos Portera-Cailliau
University of California, Los Angeles
Dec 21, 2022
SeminarNeuroscienceRecording

Neural circuits for vector processing in the insect brain

Barbara Webb
University of Edinburgh
Nov 23, 2022

Several species of insects have been observed to perform accurate path integration, constantly updating a vector memory of their location relative to a starting position, which they can use to take a direct return path. Foraging insects such as bees and ants are also able to store and recall the vectors to return to food locations, and to take novel shortcuts between these locations. Other insects, such as dung beetles, are observed to integrate multimodal directional cues in a manner well described by vector addition. All these processes appear to be functions of the Central Complex, a highly conserved and strongly structured circuit in the insect brain. Modelling this circuit, at the single neuron level, suggests it has general capabilities for vector encoding, vector memory, vector addition and vector rotation that can support a wide range of directed and navigational behaviours.

SeminarNeuroscience

Mapping learning and decision-making algorithms onto brain circuitry

Ilana Witten
Princeton
Nov 18, 2022

In the first half of my talk, I will discuss our recent work on the midbrain dopamine system. The hypothesis that midbrain dopamine neurons broadcast an error signal for the prediction of reward is among the great successes of computational neuroscience. However, our recent results contradict a core aspect of this theory: that the neurons uniformly convey a scalar, global signal. I will review this work, as well as our new efforts to update models of the neural basis of reinforcement learning with our data. In the second half of my talk, I will discuss our recent findings of state-dependent decision-making mechanisms in the striatum.

SeminarNeuroscienceRecording

Behavioral Timescale Synaptic Plasticity (BTSP) for biologically plausible credit assignment across multiple layers via top-down gating of dendritic plasticity

A. Galloni
Rutgers
Nov 9, 2022

A central problem in biological learning is how information about the outcome of a decision or behavior can be used to reliably guide learning across distributed neural circuits while obeying biological constraints. This “credit assignment” problem is commonly solved in artificial neural networks through supervised gradient descent and the backpropagation algorithm. In contrast, biological learning is typically modelled using unsupervised Hebbian learning rules. While these rules only use local information to update synaptic weights, and are sometimes combined with weight constraints to reflect a diversity of excitatory (only positive weights) and inhibitory (only negative weights) cell types, they do not prescribe a clear mechanism for how to coordinate learning across multiple layers and propagate error information accurately across the network. In recent years, several groups have drawn inspiration from the known dendritic non-linearities of pyramidal neurons to propose new learning rules and network architectures that enable biologically plausible multi-layer learning by processing error information in segregated dendrites. Meanwhile, recent experimental results from the hippocampus have revealed a new form of plasticity—Behavioral Timescale Synaptic Plasticity (BTSP)—in which large dendritic depolarizations rapidly reshape synaptic weights and stimulus selectivity with as little as a single stimulus presentation (“one-shot learning”). Here we explore the implications of this new learning rule through a biologically plausible implementation in a rate neuron network. We demonstrate that regulation of dendritic spiking and BTSP by top-down feedback signals can effectively coordinate plasticity across multiple network layers in a simple pattern recognition task. By analyzing hidden feature representations and weight trajectories during learning, we show the differences between networks trained with standard backpropagation, Hebbian learning rules, and BTSP.

SeminarNeuroscienceRecording

Hypothalamic episode generators underlying the neural control of fertility

Allan Herbison
Department of Physiology, Development and Neuroscience, University of Cambridge
Nov 8, 2022

The hypothalamus controls diverse homeostatic functions including fertility. Neural episode generators are required to drive the intermittent pulsatile and surge profiles of reproductive hormone secretion that control gonadal function. Studies in genetic mouse models have been fundamental in defining the neural circuits forming these central pattern generators and the full range of in vitro and in vivo optogenetic and chemogenetic methodologies have enabled investigation into their mechanism of action. The seminar will outline studies defining the hypothalamic “GnRH pulse generator network” and current understanding of its operation to drive pulsatile hormone secretion.

SeminarNeuroscience

How fly neurons compute the direction of visual motion

Alexander Borst
Max Planck Institute of Neurobiology - Martinsried
Nov 7, 2022

Detecting the direction of image motion is important for visual navigation, predator avoidance and prey capture, and thus essential for the survival of all animals that have eyes. However, the direction of motion is not explicitly represented at the level of the photoreceptors: it rather needs to be computed by subsequent neural circuits. The exact nature of this process represents a classic example of neural computation and has been a longstanding question in the field. Our results obtained in the fruit fly Drosophila demonstrate that the local direction of motion is computed in two parallel ON and OFF pathways. Within each pathway, a retinotopic array of four direction-selective T4 (ON) and T5 (OFF) cells represents the four Cartesian components of local motion vectors (leftward, rightward, upward, downward). Since none of the presynaptic neurons is directionally selective, direction selectivity first emerges within T4 and T5 cells. Our present research focuses on the cellular and biophysical mechanisms by which the direction of image motion is computed in these neurons.

SeminarNeuroscience

Signal in the Noise: models of inter-trial and inter-subject neural variability

Alex Williams
NYU/Flatiron
Nov 4, 2022

The ability to record large neural populations—hundreds to thousands of cells simultaneously—is a defining feature of modern systems neuroscience. Aside from improved experimental efficiency, what do these technologies fundamentally buy us? I'll argue that they provide an exciting opportunity to move beyond studying the "average" neural response. That is, by providing dense neural circuit measurements in individual subjects and moments in time, these recordings enable us to track changes across repeated behavioral trials and across experimental subjects. These two forms of variability are still poorly understood, despite their obvious importance to understanding the fidelity and flexibility of neural computations. Scientific progress on these points has been impeded by the fact that individual neurons are very noisy and unreliable. My group is investigating a number of customized statistical models to overcome this challenge. I will mention several of these models but focus particularly on a new framework for quantifying across-subject similarity in stochastic trial-by-trial neural responses. By applying this method to noisy representations in deep artificial networks and in mouse visual cortex, we reveal that the geometry of neural noise correlations is a meaningful feature of variation, which is neglected by current methods (e.g. representational similarity analysis).

SeminarNeuroscienceRecording

No Free Lunch from Deep Learning in Neuroscience: A Case Study through Models of the Entorhinal-Hippocampal Circuit

Rylan Schaeffer
Fiete lab, MIT
Nov 2, 2022

Research in Neuroscience, as in many scientific disciplines, is undergoing a renaissance based on deep learning. Unique to Neuroscience, deep learning models can be used not only as a tool but interpreted as models of the brain. The central claims of recent deep learning-based models of brain circuits are that they shed light on fundamental functions being optimized or make novel predictions about neural phenomena. We show, through the case-study of grid cells in the entorhinal-hippocampal circuit, that one may get neither. We rigorously examine the claims of deep learning models of grid cells using large-scale hyperparameter sweeps and theory-driven experimentation, and demonstrate that the results of such models are more strongly driven by particular, non-fundamental, and post-hoc implementation choices than fundamental truths about neural circuits or the loss function(s) they might optimize. We discuss why these models cannot be expected to produce accurate models of the brain without the addition of substantial amounts of inductive bias, an informal No Free Lunch result for Neuroscience.

SeminarNeuroscienceRecording

Zero to Birth: How the Human Brain is Built

Bill Harris
Department of Physiology, Development and Neuroscience, University of Cambridge
Oct 18, 2022

By the time a baby is born, its brain is equipped with tens of billions of intricately crafted neurons wired together to form a compact and breathtakingly efficient supercomputer. The book is meant to give a broad audience (i.e. non-neuroscientists) a sense of the step-by-step construction of a human brain as well as our current conceptual understanding of various processes involved. The book also hopes to highlight relevance of brain development to our growing understanding of cognitive and psychological variations and syndromes. The author will talk about the book including the many challenges and rewards involved in writing it.

SeminarNeuroscience

Multi-level theory of neural representations in the era of large-scale neural recordings: Task-efficiency, representation geometry, and single neuron properties

SueYeon Chung
NYU/Flatiron
Sep 16, 2022

A central goal in neuroscience is to understand how orchestrated computations in the brain arise from the properties of single neurons and networks of such neurons. Answering this question requires theoretical advances that shine light into the ‘black box’ of representations in neural circuits. In this talk, we will demonstrate theoretical approaches that help describe how cognitive and behavioral task implementations emerge from the structure in neural populations and from biologically plausible neural networks. First, we will introduce an analytic theory that connects geometric structures that arise from neural responses (i.e., neural manifolds) to the neural population’s efficiency in implementing a task. In particular, this theory describes a perceptron’s capacity for linearly classifying object categories based on the underlying neural manifolds’ structural properties. Next, we will describe how such methods can, in fact, open the ‘black box’ of distributed neuronal circuits in a range of experimental neural datasets. In particular, our method overcomes the limitations of traditional dimensionality reduction techniques, as it operates directly on the high-dimensional representations, rather than relying on low-dimensionality assumptions for visualization. Furthermore, this method allows for simultaneous multi-level analysis, by measuring geometric properties in neural population data, and estimating the amount of task information embedded in the same population. These geometric frameworks are general and can be used across different brain areas and task modalities, as demonstrated in the work of ours and others, ranging from the visual cortex to parietal cortex to hippocampus, and from calcium imaging to electrophysiology to fMRI datasets. Finally, we will discuss our recent efforts to fully extend this multi-level description of neural populations, by (1) investigating how single neuron properties shape the representation geometry in early sensory areas, and by (2) understanding how task-efficient neural manifolds emerge in biologically-constrained neural networks. By extending our mathematical toolkit for analyzing representations underlying complex neuronal networks, we hope to contribute to the long-term challenge of understanding the neuronal basis of tasks and behaviors.

SeminarNeuroscience

Neural Circuit Mechanisms of Abstract Decision Making

David Freedman
University of Chicago
Sep 7, 2022
SeminarNeuroscience

The role of astroglia-neuron interactions in generation and spread of seizures

Emre Yaksi
Kavli Institute for Systems Neuroscience, Norwegian University of Science and technology
Jul 6, 2022

Astroglia-neuron interactions are involved in multiple processes, regulating development, excitability and connectivity of neural circuits. Accumulating number of evidences highlight a direct connection between aberrant astroglial genetics and physiology in various forms of epilepsies. Using zebrafish seizure models, we showed that neurons and astroglia follow different spatiotemporal dynamics during transitions from pre-ictal to ictal activity. We observed that during pre-ictal period neurons exhibit local synchrony and low level of activity, whereas astroglia exhibit global synchrony and high-level of calcium signals that are anti correlated with neural activity. Instead, generalized seizures are marked by a massive release of astroglial glutamate release as well as a drastic increase of astroglia and neuronal activity and synchrony across the entire brain. Knocking out astroglial glutamate transporters leads to recurrent spontaneous generalized seizures accompanied with massive astroglial glutamate release. We are currently using a combination of genetic and pharmacological approaches to perturb astroglial glutamate signalling and astroglial gap junctions to further investigate their role in generation and spreading of epileptic seizures across the brain.

SeminarNeuroscience

Imperial Neurotechnology 2022 - Annual Research Symposium

Marcus Kaiser, Sarah Marzi, Giuseppe Gava, Gema Vera Gonzalez, Matteo Vinao-Carl, Sihao Lu, Hayriye Cagnan
Nottingham University, Imperial College, University of Oxford
Jul 5, 2022

A diverse mix of neurotechnology talks and posters from researchers at Imperial and beyond. Visit our event page to find out more. The event is in-person but talk sessions will be broadcast via Teams.

SeminarNeuroscience

From Computation to Large-scale Neural Circuitry in Human Belief Updating

Tobias Donner
University Medical Center Hamburg-Eppendorf
Jun 29, 2022

Many decisions under uncertainty entail dynamic belief updating: multiple pieces of evidence informing about the state of the environment are accumulated across time to infer the environmental state, and choose a corresponding action. Traditionally, this process has been conceptualized as a linear and perfect (i.e., without loss) integration of sensory information along purely feedforward sensory-motor pathways. Yet, natural environments can undergo hidden changes in their state, which requires a non-linear accumulation of decision evidence that strikes a tradeoff between stability and flexibility in response to change. How this adaptive computation is implemented in the brain has remained unknown. In this talk, I will present an approach that my laboratory has developed to identify evidence accumulation signatures in human behavior and neural population activity (measured with magnetoencephalography, MEG), across a large number of cortical areas. Applying this approach to data recorded during visual evidence accumulation tasks with change-points, we find that behavior and neural activity in frontal and parietal regions involved in motor planning exhibit hallmarks signatures of adaptive evidence accumulation. The same signatures of adaptive behavior and neural activity emerge naturally from simulations of a biophysically detailed model of a recurrent cortical microcircuit. The MEG data further show that decision dynamics in parietal and frontal cortex are mirrored by a selective modulation of the state of early visual cortex. This state modulation is (i) specifically expressed in the alpha frequency-band, (ii) consistent with feedback of evolving belief states from frontal cortex, (iii) dependent on the environmental volatility, and (iv) amplified by pupil-linked arousal responses during evidence accumulation. Together, our findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related long-range feedback processing in the brain.

SeminarNeuroscience

Optimal information loading into working memory in prefrontal cortex

Maté Lengyel
University of Cambridge, UK
Jun 22, 2022

Working memory involves the short-term maintenance of information and is critical in many tasks. The neural circuit dynamics underlying working memory remain poorly understood, with different aspects of prefrontal cortical (PFC) responses explained by different putative mechanisms. By mathematical analysis, numerical simulations, and using recordings from monkey PFC, we investigate a critical but hitherto ignored aspect of working memory dynamics: information loading. We find that, contrary to common assumptions, optimal information loading involves inputs that are largely orthogonal, rather than similar, to the persistent activities observed during memory maintenance. Using a novel, theoretically principled metric, we show that PFC exhibits the hallmarks of optimal information loading and we find that such dynamics emerge naturally as a dynamical strategy in task-optimized recurrent neural networks. Our theory unifies previous, seemingly conflicting theories of memory maintenance based on attractor or purely sequential dynamics, and reveals a normative principle underlying the widely observed phenomenon of dynamic coding in PFC.

SeminarNeuroscience

How neural circuits organize and learn during development

Julijana Gjorgjieva
Technical University of Munich
Jun 15, 2022

To generate brain circuits that are both flexible and stable requires the coordination of powerful developmental mechanisms acting at different scales, including activity-dependent synaptic plasticity and changes in single neuron properties. The brain prepares to efficiently compute information and reliably generate behavior during early development without any prior sensory experience but through patterned spontaneous activity. After the onset of sensory experience, ongoing activity continues to modify sensory circuits, and plays an important functional role in the mature brain. Using quantitative data analysis, experiment-driven theory and computational modeling, I will present a framework for how neural circuits are built and organized during early postnatal development into functional units, and how they are modified by intact and perturbed sensory-evoked activity. Inspired by experimental data from sensory cortex, I will then show how neural circuits use the resulting non-random connectivity to flexibly gate a network’s response, providing a mechanism for routing information.

SeminarNeuroscience

Using eye tracking to investigate neural circuits in health and disease

Doug Munoz
Director, Centre for Neuroscience Studies & Professor, Biomedical & Molecular Sciences, Psychology & Medicine, Queen's University, Kingston, ON, Canada
Jun 14, 2022
SeminarNeuroscienceRecording

Reprogramming the nociceptive circuit topology reshapes sexual behavior in C. elegans

Vladyslava Pechuk
Oren lab, Weizmann Institute of Science
Jun 8, 2022

In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. Yet, how sexually dimorphic behavior is encoded in the nervous system is poorly understood. We characterize the sexually dimorphic nociceptive behavior in C. elegans – hermaphrodites present a lower pain threshold than males in response to aversive stimuli, and study the underlying neuronal circuits, which are composed of the same neurons that are wired differently. By imaging receptor expression, calcium responses and glutamate secretion, we show that sensory transduction is similar in the two sexes, and therefore explore how downstream network topology shapes dimorphic behavior. We generated a computational model that replicates the observed dimorphic behavior, and used this model to predict simple network rewirings that would switch the behavior between the sexes. We then showed experimentally, using genetic manipulations, artificial gap junctions, automated tracking and optogenetics, that these subtle changes to male connectivity result in hermaphrodite-like aversive behavior in-vivo, while hermaphrodite behavior was more robust to perturbations. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that the network topology that enables efficient avoidance of noxious cues would have a reproductive "cost". To summarize, we present a deconstruction of a sex-shared neural circuit that affects sexual behavior, and how to reprogram it. More broadly, our results are an example of how common neuronal circuits changed their function during evolution by subtle topological rewirings to account for different environmental and sexual needs.

SeminarNeuroscienceRecording

Trading Off Performance and Energy in Spiking Networks

Sander Keemink
Donders Institute for Brain, Cognition and Behaviour
Jun 1, 2022

Many engineered and biological systems must trade off performance and energy use, and the brain is no exception. While there are theories on how activity levels are controlled in biological networks through feedback control (homeostasis), it is not clear what the effects on population coding are, and therefore how performance and energy can be traded off. In this talk we will consider this tradeoff in auto-encoding networks, in which there is a clear definition of performance (the coding loss). We first show how SNNs follow a characteristic trade-off curve between activity levels and coding loss, but that standard networks need to be retrained to achieve different tradeoff points. We next formalize this tradeoff with a joint loss function incorporating coding loss (performance) and activity loss (energy use). From this loss we derive a class of spiking networks which coordinates its spiking to minimize both the activity and coding losses -- and as a result can dynamically adjust its coding precision and energy use. The network utilizes several known activity control mechanisms for this --- threshold adaptation and feedback inhibition --- and elucidates their potential function within neural circuits. Using geometric intuition, we demonstrate how these mechanisms regulate coding precision, and thereby performance. Lastly, we consider how these insights could be transferred to trained SNNs. Overall, this work addresses a key energy-coding trade-off which is often overlooked in network studies, expands on our understanding of homeostasis in biological SNNs, as well as provides a clear framework for considering performance and energy use in artificial SNNs.

SeminarNeuroscienceRecording

What the fly’s eye tells the fly’s brain…and beyond

Gwyneth Card
Janelia Research Campus, HHMI
Jun 1, 2022

Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.

SeminarNeuroscienceRecording

Neural Circuit Mechanisms of Pattern Separation in the Dentate Gyrus

Alessandro Galloni
Rutgers University
Jun 1, 2022

The ability to discriminate different sensory patterns by disentangling their neural representations is an important property of neural networks. While a variety of learning rules are known to be highly effective at fine-tuning synapses to achieve this, less is known about how different cell types in the brain can facilitate this process by providing architectural priors that bias the network towards sparse, selective, and discriminable representations. We studied this by simulating a neuronal network modelled on the dentate gyrus—an area characterised by sparse activity associated with pattern separation in spatial memory tasks. To test the contribution of different cell types to these functions, we presented the model with a wide dynamic range of input patterns and systematically added or removed different circuit elements. We found that recruiting feedback inhibition indirectly via recurrent excitatory neurons proved particularly helpful in disentangling patterns, and show that simple alignment principles for excitatory and inhibitory connections are a highly effective strategy.

SeminarNeuroscience

Unchanging and changing: hardwired taste circuits and their top-down control

Hao Jin
Columbia
May 25, 2022

The taste system detects 5 major categories of ethologically relevant stimuli (sweet, bitter, umami, sour and salt) and accordingly elicits acceptance or avoidance responses. While these taste responses are innate, the taste system retains a remarkable flexibility in response to changing external and internal contexts. Taste chemicals are first recognized by dedicated taste receptor cells (TRCs) and then transmitted to the cortex via a multi-station relay. I reasoned that if I could identify taste neural substrates along this pathway, it would provide an entry to decipher how taste signals are encoded to drive innate response and modulated to facilitate adaptive response. Given the innate nature of taste responses, these neural substrates should be genetically identifiable. I therefore exploited single-cell RNA sequencing to isolate molecular markers defining taste qualities in the taste ganglion and the nucleus of the solitary tract (NST) in the brainstem, the two stations transmitting taste signals from TRCs to the brain. How taste information propagates from the ganglion to the brain is highly debated (i.e., does taste information travel in labeled-lines?). Leveraging these genetic handles, I demonstrated one-to-one correspondence between ganglion and NST neurons coding for the same taste. Importantly, inactivating one ‘line’ did not affect responses to any other taste stimuli. These results clearly showed that taste information is transmitted to the brain via labeled lines. But are these labeled lines aptly adapted to the internal state and external environment? I studied the modulation of taste signals by conflicting taste qualities in the concurrence of sweet and bitter to understand how adaptive taste responses emerge from hardwired taste circuits. Using functional imaging, anatomical tracing and circuit mapping, I found that bitter signals suppress sweet signals in the NST via top-down modulation by taste cortex and amygdala of NST taste signals. While the bitter cortical field provides direct feedback onto the NST to amplify incoming bitter signals, it exerts negative feedback via amygdala onto the incoming sweet signal in the NST. By manipulating this feedback circuit, I showed that this top-down control is functionally required for bitter evoked suppression of sweet taste. These results illustrate how the taste system uses dedicated feedback lines to finely regulate innate behavioral responses and may have implications for the context-dependent modulation of hardwired circuits in general.

SeminarNeuroscienceRecording

Apathy and impulsivity in neurological disease – cause, effect and treatment

James Rowe
Department of Clinical Neurosciences, University of Cambridge
May 24, 2022
ePosterNeuroscience

Deep inverse modeling reveals dynamic-dependent invariances in neural circuits mechanisms

Richard Gao, Michael Deistler, Auguste Schulz, Pedro Gonçalves, Jakob Macke

Bernstein Conference 2024

ePosterNeuroscience

Uncovering neural circuit’s motifs and animal states using higher-order interactions

Safura Rashid Shomali, S. Nader Rasuli, Hideaki Shimazaki, Sadra Sadeh

Bernstein Conference 2024

ePosterNeuroscience

Auxiliary neurons in optimized recurrent neural circuit speed up sampling-based probabilistic inference

Wah Ming Wayne Soo,Máté Lengyel

COSYNE 2022

ePosterNeuroscience

Emergence of convolutional structure in neural circuits

Alessandro Ingrosso,Sebastian Goldt

COSYNE 2022

ePosterNeuroscience

Neural Circuit Architectural Priors for Motor Control

Nikhil Bhattasali,Anthony Zador,Tatiana Engel

COSYNE 2022

ePosterNeuroscience

Neural Circuit Architectural Priors for Motor Control

Nikhil Bhattasali,Anthony Zador,Tatiana Engel

COSYNE 2022

ePosterNeuroscience

A neural circuit model of hidden state inference for navigation and contextual memory

Isabel Low,Scott Linderman,Lisa Giocomo,Alex Williams

COSYNE 2022

ePosterNeuroscience

A neural circuit model of hidden state inference for navigation and contextual memory

Isabel Low,Scott Linderman,Lisa Giocomo,Alex Williams

COSYNE 2022

ePosterNeuroscience

The smart image compression algorithm in the retina: recoding inputs in neural circuits

Gabrielle Gutierrez,Fred Rieke,Eric Shea-Brown

COSYNE 2022

ePosterNeuroscience

The smart image compression algorithm in the retina: recoding inputs in neural circuits

Gabrielle Gutierrez,Fred Rieke,Eric Shea-Brown

COSYNE 2022

ePosterNeuroscience

Controlled generation of functional human neural circuits

Johannes Striebel, Rouhollah Habibey, Volker Busskamp

COSYNE 2023

ePosterNeuroscience

Encoding priors in recurrent neural circuits with dendritic nonlinearities

Benjamin Lyo, Eero Simoncelli, Cristina Savin

COSYNE 2023

ePosterNeuroscience

Exploring a neural circuit for estimating ambient wind direction in flight

Christina May, John Crimaldi, Floris van Breugel, Katherine Nagel

COSYNE 2023

ePosterNeuroscience

Neural circuitry underlying cortical control of vocalization-driven maternal behavior

Amy LeMessurier, Ayat Agha, Robert Froemke

COSYNE 2023

ePosterNeuroscience

Controlling Gradient Dynamics for Improved Temporal Learning in Neural Circuits

Rainer Engelken, Larry Abbott

COSYNE 2025

ePosterNeuroscience

Deep inverse modeling reveals dynamic-dependent invariances in neural circuit mechanisms

Richard Gao, Michael Deistler, Auguste Schulz, Pedro Goncalves, Jakob Macke

COSYNE 2025

ePosterNeuroscience

Discovering plasticity rules that organize and maintain neural circuits

David Bell, Alison Duffy, Adrienne Fairhall

COSYNE 2025

ePosterNeuroscience

Minimal neural circuit elements for dopaminergic temporal difference learning

Malcolm Campbell, Yongsoo Ra, Shudi Xu, Sara Matias, Mitsuko Watabe-Uchida, Naoshige Uchida

COSYNE 2025

ePosterNeuroscience

Neural circuit architectural priors for quadruped locomotion

Nikhil Bhattasali, Venkatesh Pattabiraman, Lerrel Pinto, Grace Lindsay

COSYNE 2025

ePosterNeuroscience

Neural circuit mechanisms of bottom-up reward learning

Zachary Zeisler, Fred Stoll, Davide Folloni, Matthew G. Perich, Peter Rudebeck

COSYNE 2025

ePosterNeuroscience

Symmetries and continuous attractors in disordered neural circuits

David Clark, Larry Abbott, Haim Sompolinsky

COSYNE 2025

ePosterNeuroscience

Analysis of anxiety-related/social behaviour and neural circuitry abnormalities in ligand of Numb protein X (LNX) knockout mice

Laura Cioccarelli, Joan Lenihan, Leah Erwin, Paul Young

FENS Forum 2024

ePosterNeuroscience

A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits

Jonas Wietek, Adrianna Nozownik, Mauro Pulin, Inbar Saraf-Sinik, Noa Matosevich, Raajaram Gowrishankar, Asaf Gat, Daniela Malan, Bobbie J. Brown, Julien Dine, Bibi Nusreen Imambocus, Rivka Levy, Kathrin Sauter, Anna Litvin, Noa Regev, Suraj Subramaniam, Khalid Abrera, Dustin Summarli, Eva Madeline Goren, Gili Mizrachi, Eyal Bitton, Asaf Benjamin, Bryan A. Copits, Philipp Sasse, Benjamin R. Rost, Dietmar Schmitz, Michael R. Bruchas, Peter Soba, Meital Oren-Suissa, Yuval Nir, J. Simon Wiegert, Ofer Yizhar

FENS Forum 2024

ePosterNeuroscience

A brainstem neural circuit for instinctive assessment and escape in mice

Irene Ayuso-Jimeno, Sofia Torchia, Alvaro H. Crevenna Escobar, Sergio Espinola, Emerald Perlas, Taddeo Salemi, Cornelius T. Gross

FENS Forum 2024

ePosterNeuroscience

Characterization of ASD-associated FoxP genes in neural circuit formation

Hanna Yeliseyeva, Martin Müller, Esther Stoeckli

FENS Forum 2024

ePosterNeuroscience

Can dynamic causal modelling (DCM) identify multistable neural circuits for decision-making?

Amin Azimi, Abdoreza Asadpour, KongFatt Wong-Lin

FENS Forum 2024

ePosterNeuroscience

Interactions of a sleep-control centre with a neural circuit used for navigation

Lea Ballenberger, Gero Miesenböck

FENS Forum 2024

ePosterNeuroscience

Investigation of the effects of high-calorie diet on synaptic neurotransmission in the ARCTH → PVH neural circuit by optogenetic and electrophysiological methods

Yavuz Yavuz, Huseyin Bugra Ozgun, Deniz Oyku Ozen, Habibe Goren, Bayram Yilmaz

FENS Forum 2024

ePosterNeuroscience

Mapping the neural circuitry: LC-NE neurons and their connections to VTA and Raphe nuclei

Maud Blaise, Valentine Greffion, Déa Slavova, Stephanie de Gois, Bruno Giros, Elsa Isingrini

FENS Forum 2024

ePosterNeuroscience

Modelling Dravet syndrome using human induced pluripotent stem cell (hiPSC)-derived neural circuits

Federica Riccio, Guilherme Neves, Michelle Gottileb Marra, Jernej Ule, Ivo Lieberam, Juan Burrone

FENS Forum 2024

ePosterNeuroscience

Molecular connectomics reveals a glucagon-like peptide 1 sensitive neural circuit for satiety

Addison Webster, Jordan Becker, Chia Li, Dana Schwalbe, Damien Kerspern, Eva Karolczak, Elizabeth Godschall, Dylan Belmont-Rausch, Tune H. Pers, Andrew Lutas, Naomi Habib, Ali D. Guler, Michael J. Krashes, John N. Campbell

FENS Forum 2024

ePosterNeuroscience

A neural circuit connects aversive memory generalization to depression-like behaviors

FENS Forum 2024

ePosterNeuroscience

Newly synthetic synaptic connector repairs neural circuits damaged by spinal cord injury: recovery from chronic spinal cord injury.

FENS Forum 2024

ePosterNeuroscience

Nonlinear neural circuit model accounts for nonhuman primates’ choice behaviour and LIP neuronal activity in perceptual decisions uncoupled from motor actions

Brendan Lenfesty, Abdoreza Asadpour, Michael N. Shadlen, Saugat Bhattacharyya, Shushruth Shushruth, KongFatt Wong-Lin

FENS Forum 2024

ePosterNeuroscience

Probing neural circuit motifs in zebrafish using holographic optogenetics

Rahul Trivedi, Jennifer Li, Drew Robson

FENS Forum 2024

ePosterNeuroscience

In ovo RNAi as an efficient tool to explore molecular mechanisms of neural circuit formation in the cerebellum of chicken embryos

Aikaterini (Katerina) Koutourlou, Martina Schaettin, Esther T. Stoeckli

FENS Forum 2024

ePosterNeuroscience

Structural remodeling of neural circuits via engineered neuro-glial interactions

Shinheun Kim, Woojin Won, Gyu Hyun Kim, Yeon Hee Kook, Mingu Gordon Park, Dong Yeop Kang, Young-Jin Choi, Kea Joo Lee, C. Justin Lee, Sangkyu Lee

FENS Forum 2024

ePosterNeuroscience

Ultrafast two-photon all-optical interrogation of neural circuits with acousto-optic deflectors

Matteo Pisoni, Yannick Goulam Houssen, Benjamin Mathieu, Pierre Bizouard, Stéphane Dieudonné, Brice Bathellier

FENS Forum 2024

ePosterNeuroscience

Unraveling the role of NALCN in neural circuit development

Candela Barettino, Álvaro Ballesteros-González, Hiromasa Funato, Masashi Yanagisawa, Dejian Ren, Leszek Lisowski, Stephan Pless, Antonio Gil-Nagel, Arnaud Monteil, Isabel Del Pino

FENS Forum 2024

ePosterNeuroscience

Meta-Learning the Inductive Biases of Simple Neural Circuits

Maria Yuffa

Neuromatch 5

neural circuit coverage

90 items

Seminar50
ePoster40
Domain spotlight

Explore how neural circuit research is advancing inside Neuro.

Visit domain