← Back

Optimization

Topic spotlight
TopicNeuro

optimization

Discover seminars, jobs, and research tagged with optimization across Neuro.
25 curated items25 Seminars
Updated 6 months ago
25 items · optimization

Latest

25 results
SeminarNeuroscience

Neural circuits underlying sleep structure and functions

Antoine Adamantidis
University of Bern
Jun 13, 2025

Sleep is an active state critical for processing emotional memories encoded during waking in both humans and animals. There is a remarkable overlap between the brain structures and circuits active during sleep, particularly rapid eye-movement (REM) sleep, and the those encoding emotions. Accordingly, disruptions in sleep quality or quantity, including REM sleep, are often associated with, and precede the onset of, nearly all affective psychiatric and mood disorders. In this context, a major biomedical challenge is to better understand the underlying mechanisms of the relationship between (REM) sleep and emotion encoding to improve treatments for mental health. This lecture will summarize our investigation of the cellular and circuit mechanisms underlying sleep architecture, sleep oscillations, and local brain dynamics across sleep-wake states using electrophysiological recordings combined with single-cell calcium imaging or optogenetics. The presentation will detail the discovery of a 'somato-dendritic decoupling'in prefrontal cortex pyramidal neurons underlying REM sleep-dependent stabilization of optimal emotional memory traces. This decoupling reflects a tonic inhibition at the somas of pyramidal cells, occurring simultaneously with a selective disinhibition of their dendritic arbors selectively during REM sleep. Recent findings on REM sleep-dependent subcortical inputs and neuromodulation of this decoupling will be discussed in the context of synaptic plasticity and the optimization of emotional responses in the maintenance of mental health.

SeminarNeuroscience

Applied cognitive neuroscience to improve learning and therapeutics

Greg Applebaum
Department of Psychiatry, University of California, San Diego
May 16, 2024

Advancements in cognitive neuroscience have provided profound insights into the workings of the human brain and the methods used offer opportunities to enhance performance, cognition, and mental health. Drawing upon interdisciplinary collaborations in the University of California San Diego, Human Performance Optimization Lab, this talk explores the application of cognitive neuroscience principles in three domains to improve human performance and alleviate mental health challenges. The first section will discuss studies addressing the role of vision and oculomotor function in athletic performance and the potential to train these foundational abilities to improve performance and sports outcomes. The second domain considers the use of electrophysiological measurements of the brain and heart to detect, and possibly predict, errors in manual performance, as shown in a series of studies with surgeons as they perform robot-assisted surgery. Lastly, findings from clinical trials testing personalized interventional treatments for mood disorders will be discussed in which the temporal and spatial parameters of transcranial magnetic stimulation (TMS) are individualized to test if personalization improves treatment response and can be used as predictive biomarkers to guide treatment selection. Together, these translational studies use the measurement tools and constructs of cognitive neuroscience to improve human performance and well-being.

SeminarNeuroscience

Maintaining Plasticity in Neural Networks

Clare Lyle
DeepMind
Mar 13, 2024

Nonstationarity presents a variety of challenges for machine learning systems. One surprising pathology which can arise in nonstationary learning problems is plasticity loss, whereby making progress on new learning objectives becomes more difficult as training progresses. Networks which are unable to adapt in response to changes in their environment experience plateaus or even declines in performance in highly non-stationary domains such as reinforcement learning, where the learner must quickly adapt to new information even after hundreds of millions of optimization steps. The loss of plasticity manifests in a cluster of related empirical phenomena which have been identified by a number of recent works, including the primacy bias, implicit under-parameterization, rank collapse, and capacity loss. While this phenomenon is widely observed, it is still not fully understood. This talk will present exciting recent results which shed light on the mechanisms driving the loss of plasticity in a variety of learning problems and survey methods to maintain network plasticity in non-stationary tasks, with a particular focus on deep reinforcement learning.

SeminarNeuroscience

Current and future trends in neuroimaging

Andy Jahn
fMRI Lab, University of Michigan
Dec 6, 2023

With the advent of several different fMRI analysis tools and packages outside of the established ones (i.e., SPM, AFNI, and FSL), today's researcher may wonder what the best practices are for fMRI analysis. This talk will discuss some of the recent trends in neuroimaging, including design optimization and power analysis, standardized analysis pipelines such as fMRIPrep, and an overview of current recommendations for how to present neuroimaging results. Along the way we will discuss the balance between Type I and Type II errors with different correction mechanisms (e.g., Threshold-Free Cluster Enhancement and Equitable Thresholding and Clustering), as well as considerations for working with large open-access databases.

SeminarNeuroscienceRecording

Universal function approximation in balanced spiking networks through convex-concave boundary composition

W. F. Podlaski
Champalimaud
Nov 10, 2022

The spike-threshold nonlinearity is a fundamental, yet enigmatic, component of biological computation — despite its role in many theories, it has evaded definitive characterisation. Indeed, much classic work has attempted to limit the focus on spiking by smoothing over the spike threshold or by approximating spiking dynamics with firing-rate dynamics. Here, we take a novel perspective that captures the full potential of spike-based computation. Based on previous studies of the geometry of efficient spike-coding networks, we consider a population of neurons with low-rank connectivity, allowing us to cast each neuron’s threshold as a boundary in a space of population modes, or latent variables. Each neuron divides this latent space into subthreshold and suprathreshold areas. We then demonstrate how a network of inhibitory (I) neurons forms a convex, attracting boundary in the latent coding space, and a network of excitatory (E) neurons forms a concave, repellant boundary. Finally, we show how the combination of the two yields stable dynamics at the crossing of the E and I boundaries, and can be mapped onto a constrained optimization problem. The resultant EI networks are balanced, inhibition-stabilized, and exhibit asynchronous irregular activity, thereby closely resembling cortical networks of the brain. Moreover, we demonstrate how such networks can be tuned to either suppress or amplify noise, and how the composition of inhibitory convex and excitatory concave boundaries can result in universal function approximation. Our work puts forth a new theory of biologically-plausible computation in balanced spiking networks, and could serve as a novel framework for scalable and interpretable computation with spikes.

SeminarNeuroscience

What does time of day mean for vision?

Annette Allen
University of Manchester (UK)
May 5, 2022

Profound changes in the visual environment occur over the course of the day-night cycle. There is therefore a profound pressure for cells and circuits within the visual system to adjust their function over time, to match the prevailing visual environment. Here, I will discuss electrophysiological data collected from nocturnal and diurnal rodents that reveal how the visual code is ‘temporally optimised’ by 1) the retina’s circadian clock, and 2) a change in behavioural temporal niche.

SeminarNeuroscienceRecording

Optimization at the Single Neuron Level:​ Prediction of Spike Sequences and Emergence of Synaptic Plasticity Mechanisms

Matteo Saponati
Ernst-Strüngmann Institute for Neuroscience
May 4, 2022

Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We propose a plasticity rule based on pre-dictive processing, where the neuron learns a low-rank model of the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that maximally predict other synaptic inputs based on their temporal relations, which provide a solution to an optimization problem that can be implemented at the single-neuron level using only local information. Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs in a sequence. We show that this mechanism can explain the development of anticipatory motion signaling and recall in the visual system. Furthermore, we demonstrate that the learning rule gives rise to several experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.

SeminarNeuroscienceRecording

NMC4 Short Talk: Hypothesis-neutral response-optimized models of higher-order visual cortex reveal strong semantic selectivity

Meenakshi Khosla
Massachusetts Institute of Technology
Dec 1, 2021

Modeling neural responses to naturalistic stimuli has been instrumental in advancing our understanding of the visual system. Dominant computational modeling efforts in this direction have been deeply rooted in preconceived hypotheses. In contrast, hypothesis-neutral computational methodologies with minimal apriorism which bring neuroscience data directly to bear on the model development process are likely to be much more flexible and effective in modeling and understanding tuning properties throughout the visual system. In this study, we develop a hypothesis-neutral approach and characterize response selectivity in the human visual cortex exhaustively and systematically via response-optimized deep neural network models. First, we leverage the unprecedented scale and quality of the recently released Natural Scenes Dataset to constrain parametrized neural models of higher-order visual systems and achieve novel predictive precision, in some cases, significantly outperforming the predictive success of state-of-the-art task-optimized models. Next, we ask what kinds of functional properties emerge spontaneously in these response-optimized models? We examine trained networks through structural ( feature visualizations) as well as functional analysis (feature verbalizations) by running `virtual' fMRI experiments on large-scale probe datasets. Strikingly, despite no category-level supervision, since the models are solely optimized for brain response prediction from scratch, the units in the networks after optimization act as detectors for semantic concepts like `faces' or `words', thereby providing one of the strongest evidences for categorical selectivity in these visual areas. The observed selectivity in model neurons raises another question: are the category-selective units simply functioning as detectors for their preferred category or are they a by-product of a non-category-specific visual processing mechanism? To investigate this, we create selective deprivations in the visual diet of these response-optimized networks and study semantic selectivity in the resulting `deprived' networks, thereby also shedding light on the role of specific visual experiences in shaping neuronal tuning. Together with this new class of data-driven models and novel model interpretability techniques, our study illustrates that DNN models of visual cortex need not be conceived as obscure models with limited explanatory power, rather as powerful, unifying tools for probing the nature of representations and computations in the brain.

SeminarNeuroscienceRecording

Deep kernel methods

Laurence Aitchison
University of Bristol
Nov 25, 2021

Deep neural networks (DNNs) with the flexibility to learn good top-layer representations have eclipsed shallow kernel methods without that flexibility. Here, we take inspiration from deep neural networks to develop a new family of deep kernel method. In a deep kernel method, there is a kernel at every layer, and the kernels are jointly optimized to improve performance (with strong regularisation). We establish the representational power of deep kernel methods, by showing that they perform exact inference in an infinitely wide Bayesian neural network or deep Gaussian process. Next, we conjecture that the deep kernel machine objective is unimodal, and give a proof of unimodality for linear kernels. Finally, we exploit the simplicity of the deep kernel machine loss to develop a new family of optimizers, based on a matrix equation from control theory, that converges in around 10 steps.

SeminarNeuroscienceRecording

Norse: A library for gradient-based learning in Spiking Neural Networks

Jens Egholm Pedersen
KTH Royal Institute of Technology
Nov 3, 2021

We introduce Norse: An open-source library for gradient-based training of spiking neural networks. In contrast to neuron simulators which mainly target computational neuroscientists, our library seamlessly integrates with the existing PyTorch ecosystem using abstractions familiar to the machine learning community. This has immediate benefits in that it provides a familiar interface, hardware accelerator support and, most importantly, the ability to use gradient-based optimization. While many parallel efforts in this direction exist, Norse emphasizes flexibility and usability in three ways. Users can conveniently specify feed-forward (convolutional) architectures, as well as arbitrarily connected recurrent networks. We strictly adhere to a functional and class-based API such that neuron primitives and, for example, plasticity rules composes. Finally, the functional core API ensures compatibility with the PyTorch JIT and ONNX infrastructure. We have made progress to support network execution on the SpiNNaker platform and plan to support other neuromorphic architectures in the future. While the library is useful in its present state, it also has limitations we will address in ongoing work. In particular, we aim to implement event-based gradient computation, using the EventProp algorithm, which will allow us to support sparse event-based data efficiently, as well as work towards support of more complex neuron models. With this library, we hope to contribute to a joint future of computational neuroscience and neuromorphic computing.

SeminarNeuroscienceRecording

Event-based Backpropagation for Exact Gradients in Spiking Neural Networks

Christian Pehle
Heidelberg University
Nov 3, 2021

Gradient-based optimization powered by the backpropagation algorithm proved to be the pivotal method in the training of non-spiking artificial neural networks. At the same time, spiking neural networks hold the promise for efficient processing of real-world sensory data by communicating using discrete events in continuous time. We derive the backpropagation algorithm for a recurrent network of spiking (leaky integrate-and-fire) neurons with hard thresholds and show that the backward dynamics amount to an event-based backpropagation of errors through time. Our derivation uses the jump conditions for partial derivatives at state discontinuities found by applying the implicit function theorem, allowing us to avoid approximations or substitutions. We find that the gradient exists and is finite almost everywhere in weight space, up to the null set where a membrane potential is precisely tangent to the threshold. Our presented algorithm, EventProp, computes the exact gradient with respect to a general loss function based on spike times and membrane potentials. Crucially, the algorithm allows for an event-based communication scheme in the backward phase, retaining the potential advantages of temporal sparsity afforded by spiking neural networks. We demonstrate the optimization of spiking networks using gradients computed via EventProp and the Yin-Yang and MNIST datasets with either a spike time-based or voltage-based loss function and report competitive performance. Our work supports the rigorous study of gradient-based optimization in spiking neural networks as well as the development of event-based neuromorphic architectures for the efficient training of spiking neural networks. While we consider the leaky integrate-and-fire model in this work, our methodology generalises to any neuron model defined as a hybrid dynamical system.

SeminarNeuroscienceRecording

Optimal initialization strategies for Deep Spiking Neural Networks

Julia Gygax
Friedrich Miescher Institute for Biomedical Research (FMI)
Nov 3, 2021

Recent advances in neuromorphic hardware and Surrogate Gradient (SG) learning highlight the potential of Spiking Neural Networks (SNNs) for energy-efficient signal processing and learning. Like in Artificial Neural Networks (ANNs), training performance in SNNs strongly depends on the initialization of synaptic and neuronal parameters. While there are established methods of initializing deep ANNs for high performance, effective strategies for optimal SNN initialization are lacking. Here, we address this gap and propose flexible data-dependent initialization strategies for SNNs.

SeminarNeuroscienceRecording

Optimising spiking interneuron circuits for compartment-specific feedback

Henning Sprekeler
Technische Universität Berlin
Nov 2, 2021

Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition, but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted an optimization approach. Leveraging recent advances in training spiking network models, we optimized the connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. The resulting circuit can be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical circuits by a combination of gradient-based optimization and biologically plausible phenomenological models

SeminarNeuroscienceRecording

Credit Assignment in Neural Networks through Deep Feedback Control

Alexander Meulemans
Institute of Neuroinformatics, University of Zürich and ETH Zürich
Sep 30, 2021

The success of deep learning sparked interest in whether the brain learns by using similar techniques for assigning credit to each synaptic weight for its contribution to the network output. However, the majority of current attempts at biologically-plausible learning methods are either non-local in time, require highly specific connectivity motives, or have no clear link to any known mathematical optimization method. Here, we introduce Deep Feedback Control (DFC), a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment. The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of feedback connectivity patterns. To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing. By combining dynamical system theory with mathematical optimization theory, we provide a strong theoretical foundation for DFC that we corroborate with detailed results on toy experiments and standard computer-vision benchmarks.

SeminarNeuroscience

A computational explanation for domain specificity in the human brain

Katharina Dobs
University Giessen
Nov 25, 2020

Many regions of the human brain conduct highly specific functions, such as recognizing faces, understanding language, and thinking about other people’s thoughts. Why might this domain specific organization be a good design strategy for brains, and what is the origin of domain specificity in the first place? In this talk, I will present recent work testing whether the segregation of face and object perception in human brains emerges naturally from an optimization for both tasks. We trained artificial neural networks on face and object recognition, and found that networks were able to perform both tasks well by spontaneously segregating them into distinct pathways. Critically, networks neither had prior knowledge nor any inductive bias about the tasks. Furthermore, networks optimized on tasks which apparently do not develop specialization in the human brain, such as food or cars, and object categorization showed less task segregation. These results suggest that functional segregation can spontaneously emerge without a task-specific bias, and that the domain-specific organization of the cortex may reflect a computational optimization for the real-world tasks humans solve.

SeminarNeuroscienceRecording

Spanning the arc between optimality theories and data

Gasper Tkacik
Institute of Science and Technology Austria
Jun 2, 2020

Ideas about optimization are at the core of how we approach biological complexity. Quantitative predictions about biological systems have been successfully derived from first principles in the context of efficient coding, metabolic and transport networks, evolution, reinforcement learning, and decision making, by postulating that a system has evolved to optimize some utility function under biophysical constraints. Yet as normative theories become increasingly high-dimensional and optimal solutions stop being unique, it gets progressively hard to judge whether theoretical predictions are consistent with, or "close to", data. I will illustrate these issues using efficient coding applied to simple neuronal models as well as to a complex and realistic biochemical reaction network. As a solution, we developed a statistical framework which smoothly interpolates between ab initio optimality predictions and Bayesian parameter inference from data, while also permitting statistically rigorous tests of optimality hypotheses.

optimization coverage

25 items

Seminar25
Domain spotlight

Explore how optimization research is advancing inside Neuro.

Visit domain