← Back

Organoid

Topic spotlight
TopicNeuro

organoid

Discover seminars, jobs, and research tagged with organoid across Neuro.
31 curated items31 Seminars
Updated 15 days ago
31 items · organoid

Latest

31 results
SeminarNeuroscience

A human stem cell-derived organoid model of the trigeminal ganglion

Oliver Harschnitz
Human Technopole, Milan, Italy
Dec 8, 2025
SeminarNeuroscience

Modeling human brain development and disease: the role of primary cilia

Kyrousi Christina
Medical School, National and Kapodistrian University of Athens, Athens, Greece
Apr 24, 2024

Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.

SeminarNeuroscience

Cellular crosstalk in Neurodevelopmental Disorders

Silvia Cappello
Max Planck Institute
Sep 27, 2023

Cellular crosstalk is an essential process during brain development and it is influenced by numerous factors, including the morphology of the cells, their adhesion molecules, the local extracellular matrix and the secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the correct development of the human brain. Hence, we combine the in vivo mouse model and the in vitro human-derived neurons, cerebral organoids, and dorso-ventral assembloids in order to better comprehend the molecular and cellular mechanisms involved in ventral progenitors’ proliferation and fate as well as migration and maturation of inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders. We particularly focus on mutations in genes influencing cell-cell contacts, extracellular matrix, and secretion of vesicles and therefore study intrinsic and extrinsic mechanisms contributing to the formation of the brain. Our data reveal an important contribution of cell non-autonomous mechanisms in the development of neurodevelopmental disorders.

SeminarNeuroscienceRecording

Organoid-based single-cell spatiotemporal gene expression landscape of human embryonic development and hematopoiesis

Yiming Chao
University of Hong Kong
May 25, 2023
SeminarNeuroscience

Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development

Jennifer Erwin, Ph.D
Lieber Institute for Brain Development; Department of Neurology and Neuroscience; Johns Hopkins University School of Medicine
Mar 15, 2023

Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).

SeminarNeuroscience

Untitled Seminar

Heiko Luhmann (Germany), Mary Tolcos (Australia), Silvia Velasco (Australia)
Jul 28, 2022

Heiko Luhmann (Germany) – How neuronal activity builds the cerebral cortex; Mary Tolcos (Australia) – Cortical development and fetal brain injury; Silvia Velasco (Australia) – Human brain organoids to study neurodevelopment and disease

SeminarNeuroscience

Investigating activity-dependent processes in cerebral cortex development and disease

Simona Lodato
Humanitas University
Jul 20, 2022

The cerebral cortex contains an extraordinary diversity of excitatory projection neuron (PN) and inhibitory interneurons (IN), wired together to form complex circuits. Spatiotemporally coordinated execution of intrinsic molecular programs by PNs and INs and activity-dependent processes, contribute to cortical development and cortical microcircuits formation. Alterations of these delicate processes have often been associated to neurological/neurodevelopmental disorders. However, despite the groundbreaking discovery that spontaneous activity in the embryonic brain can shape regional identities of distinct cortical territories, it is still unclear whether this early activity contributes to define subtype-specific neuronal fate as well as circuit assembly. In this study, we combined in utero genetic perturbations via CRISPR/Cas9 system and pharmacological inhibition of selected ion channels with RNA-sequencing and live imaging technologies to identify the activity-regulated processes controlling the development of different cortical PN classes, their wiring and the acquisition of subtype specific features. Moreover, we generated human induced pluripotent stem cells (iPSCs) form patients affected by a severe, rare and untreatable form of developmental epileptic encephalopathy. By differentiating cortical organoids form patient-derived iPSCs we create human models of early electrical alterations for studying molecular, structural and functional consequences of the genetic mutations during cortical development. Our ultimate goal is to define the activity-conditioned processes that physiologically occur during the development of cortical circuits, to identify novel therapeutical paths to address the pathological consequences of neonatal epilepsies.

SeminarNeuroscienceRecording

Exploring mechanisms of human brain expansion in cerebral organoids

Madeline Lancaster
MRC Laboratory of Molecular Biology, Cambridge
May 17, 2022

The human brain sets us apart as a species, with its size being one of its most striking features. Brain size is largely determined during development as vast numbers of neurons and supportive glia are generated. In an effort to better understand the events that determine the human brain’s cellular makeup, and its size, we use a human model system in a dish, called cerebral organoids. These 3D tissues are generated from pluripotent stem cells through neural differentiation and a supportive 3D microenvironment to generate organoids with the same tissue architecture as the early human fetal brain. Such organoids are allowing us to tackle questions previously impossible with more traditional approaches. Indeed, our recent findings provide insight into regulation of brain size and neuron number across ape species, identifying key stages of early neural stem cell expansion that set up a larger starting cell number to enable the production of increased numbers of neurons. We are also investigating the role of extrinsic regulators in determining numbers and types of neurons produced in the human cerebral cortex. Overall, our findings are pointing to key, human-specific aspects of brain development and function, that have important implications for neurological disease.

SeminarNeuroscience

Reversing autism-related phenotypes in human brain organoids

Alysson Muotri
UCSD
May 4, 2022
SeminarNeuroscience

2nd In-Vitro 2D & 3D Neuronal Networks Summit

Dr. Manuel Schröter, Dr. David Pamies, Dr. Silvia Ronchi, Jens Duru, Dr. Hideaki Yamamoto, Xiaohan Xue, Danny McSweeney, Dr. Katherine Czysz, Dr. Maria Sundberg
Apr 7, 2022

The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.

SeminarNeuroscience

2nd In-Vitro 2D & 3D Neuronal Networks Summit

Prof. Dr. Nael Nadif Kasri, Prof. Dr. Naihe Jing, Prof. Dr. Bastian Hengerer, Prof. Dr. Janos Vörös, Dr. Bruna Paulsen, Dr. Annina Denoth-Lippuner, Dr, Jessica Sevetson, Prof. Dr. Kenneth Kosik
Apr 6, 2022

The event is open to everyone interested in Neuroscience, Cell Biology, Drug Discovery, Disease Modeling, and Bio/Neuroengineering! This meeting is a platform bringing scientists from all over the world together and fostering scientific exchange and collaboration.

SeminarNeuroscience

One by one: brain organoid modelling of neurodevelopmental disorders at single cell resolution

Giuseppe Testa
Human Technopole
Mar 9, 2022
SeminarNeuroscience

Epigenetic regulation of human brain organoid development in single cells

Fides Zenk
ETH Zurich, Switzerland
Feb 28, 2022
SeminarNeuroscience

Synaptic alterations in the striatum drive ASD-related behaviors in mice

Helen Bateup
UC Berkeley
Jan 12, 2022
SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 17, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarNeuroscience

Modeling human neurodevelopment and evolution using brain organoids

Alysson Muotri
University of California, San Diego
Oct 21, 2021
SeminarNeuroscienceRecording

Using Human Stem Cells to Uncover Genetic Epilepsy Mechanisms

Jack Parent
University of Michigan Medical School.
Jul 21, 2021

Reprogramming somatic cells to a pluripotent state via the induced pluripotent stem cell (iPSC) method offers an increasingly utilized approach for neurological disease modeling with patient-derived cells. Several groups, including ours, have applied the iPSC approach to model severe genetic developmental and epileptic encephalopathies (DEEs) with patient-derived cells. Although most studies to date involve 2-D cultures of patient-derived neurons, brain organoids are increasingly being employed to explore genetic DEE mechanisms. We are applying this approach to understand PMSE (Polyhydramnios, Megalencephaly and Symptomatic Epilepsy) syndrome, Rett Syndrome (in collaboration with Ben Novitch at UCLA) and Protocadherin-19 Clustering Epilepsy (PCE). I will describe our findings of robust structural phenotypes in PMSE and PCE patient-derived brain organoid models, as well as functional abnormalities identified in fusion organoid models of Rett syndrome. In addition to showing epilepsy-relevant phenotypes, both 2D and brain organoid cultures offer platforms to identify novel therapies. We will also discuss challenges and recent advances in the brain organoid field, including a new single rosette brain organoid model that we have developed. The field is advancing rapidly and our findings suggest that brain organoid approaches offers great promise for modeling genetic neurodevelopmental epilepsies and identifying precision therapies.

SeminarNeuroscienceRecording

Reproducible research using stem cell derived neurons and organoids

Selina Wray
University College London
Jul 8, 2021
SeminarNeuroscience

Reconstructing human brain organoid development with single-cell analyses

Barbara Treutlein
ETH Zurich
Jun 3, 2021
SeminarNeuroscience

Application of Airy beam light sheet microscopy to examine early neurodevelopmental structures in 3D hiPSC-derived human cortical spheroids

Deep Adhya
University of Cambridge, Department of Psychiatry
May 12, 2021

The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes—in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points.

SeminarNeuroscienceRecording

Synthetic Developmental Biology - Cross-species comparison and manipulation of organoids

Miki Ebisuya
RIKEN Center for Biosystems Dynamics Research
Apr 22, 2021
SeminarNeuroscienceRecording

Retinal organoids from pluripotent stem cells: from development to disease

Olivier Goureau
Sorbonne Université, INSERM, CNRS
Apr 20, 2021
SeminarNeuroscience

Modeling human development and disease in cerebral organoids

Jürgen Knoblich
Institute of Molecular Biotechnology (IMBA), Vienna, Austria
Feb 11, 2021
SeminarNeuroscience

Brain Organoids and Next-Generation Assembloid Models to Study Human Development and Disease

Sergiu P. Pasca
Stanford University, USA
Jan 25, 2021
SeminarNeuroscience

Rethinking neuroconstructivism through brain organoids at single cell resolution

Giuseppe Testa
Dec 15, 2020
SeminarNeuroscience

Multiplexing and Demultiplexing with cerebral organoids for neurological diseases

Elaine Lim
University of Massachusetts Medical School
Dec 2, 2020
SeminarNeuroscienceRecording

Intrinsic and extrinsic regulators of human brain size during development”

Madeline Lancaster
Medical Research Council Laboratory of Molecular Biology, Cambridge
Nov 19, 2020
SeminarNeuroscienceRecording

Studying cortical development through the lens of human disorders

Gaia Novarino
Institute of Science and Technology Austria
Oct 22, 2020
SeminarNeuroscience

Genetic screening and modeling of human-specific neurogenesis in cerebral organoids

Juergen Knoblich
IMBA
Oct 20, 2020
SeminarNeuroscienceRecording

Untitled Seminar

Sergiu Pasca
Stanford University
Jul 30, 2020
SeminarNeuroscienceRecording

Following neuronal trajectories

Silvia Cappello
Max Planck Institute of Psychiatry
May 14, 2020

Malformations of the human cerebral cortex represent a major cause of developmental disabilities. To date, animal models carrying mutations of genes so far identified in human patients with brain malformations only partially recapitulate the expected phenotypes and therefore do not provide reliable models to entirely understand the molecular and cellular mechanisms responsible for these disorders. Hence, we combine the in vivo mouse model and the human brain organoids in order to better comprehend the mechanisms involved in the migration of neurons during human development and tackle the causes of neurodevelopmental disorders. Our results show that we can model human brain development and disorders using human brain organoids and contribute to open new avenues to bridge the gap of knowledge between human brain malformations and existing animal models.

organoid coverage

31 items

Seminar31
Domain spotlight

Explore how organoid research is advancing inside Neuro.

Visit domain