pain experience
Latest
The neural basis of pain experience and its modulation by opioids
How the brain creates a painful experience remains a mystery. Solving this mystery is crucial to understanding the fundamental biological processes that underlie the perception of body integrity, and to creating better, non-addictive pain treatments. My laboratory’s goal is to resolve the neural basis of pain. We aim to understand the mechanisms by which our nervous system produces and assembles the sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions of pain to create this unique and critically important experience. To capture every component of the pain experience, we examine the entirety of the pain circuitry, from sensory and spinal ascending pathways to cortical/subcortical circuits and brainstem descending pain modulation systems, at the molecular, cellular, circuit and whole-animal levels. For these studies, we have invented novel behavioral paradigms to interrogate the affective and cognitive dimensions of pain in mice while simultaneously imaging and manipulating nociceptive circuits. My laboratory also investigates how opioids suppress pain. Remarkably, despite their medical and societal significance, how opium poppy alkaloids such as morphine produce profound analgesia remains largely unexplained. By identifying where and how opioids act in neural circuits, we not only establish the mechanisms of action of one of the oldest drugs known to humans, but also reveal the critical elements of the pain circuitry for developing of novel analgesics and bringing an end to the opioid epidemic.
Cluster Headache: Improving Therapy for the Worst Pain Experienced by Humans
Cluster headache is a brain disorder dominated clinically by dreadful episodes of excruciating pain with a circadian pattern and most often focused in bouts with circannual periodicity. As we have understood its neurobiology new therapies, including those directed at calcitonin gene-related peptide, are helpful improve the lives of sufferers.
Life of Pain and Pleasure
The ability to experience pain is old in evolutionary terms. It is an experience shared across species. Acute pain is the body’s alarm system, and as such it is a good thing. Pain that persists beyond normal tissue healing time (3-4 months) is defined as chronic – it is the system gone wrong and it is not a good thing. Chronic pain has recently been classified as both a symptom and disease in its own right. It is one of the largest medical health problems worldwide with one in five adults diagnosed with the condition. The brain is key to the experience of pain and pain relief. This is the place where pain emerges as a perception. So, relating specific brain measures using advanced neuroimaging to the change patients describe in their pain perception induced by peripheral or central sensitization (i.e. amplification), psychological or pharmacological mechanisms has tremendous value. Identifying where amplification or attenuation processes occur along the journey from injury to the brain (i.e. peripheral nerves, spinal cord, brainstem and brain) for an individual and relating these neural mechanisms to specific pain experiences, measures of pain relief, persistence of pain states, degree of injury and the subject's underlying genetics, has neuroscientific and potential diagnostic relevance. This is what neuroimaging has afforded – a better understanding and explanation of why someone’s pain is the way it is. We can go ‘behind the scenes’ of the subjective report to find out what key changes and mechanisms make up an individual’s particular pain experience. A key area of development has been pharmacological imaging where objective evidence of drugs reaching the target and working can be obtained. We even now understand the mechanisms of placebo analgesia – a powerful phenomenon known about for millennia. More recently, researchers have been investigating through brain imaging whether there is a pre-disposing vulnerability in brain networks towards developing chronic pain. So, advanced neuroimaging studies can powerfully aid explanation of a subject’s multidimensional pain experience, pain relief (analgesia) and even what makes them vulnerable to developing chronic pain. The application of this goes beyond the clinic and has relevance in courts of law, and other areas of society, such as in veterinary care. Relatively far less work has been directed at understanding what changes in the brain occur during altered states of consciousness induced either endogenously (e.g. sleep) or exogenously (e.g. anaesthesia). However, that situation is changing rapidly. Our recent multimodal neuroimaging work explores how anaesthetic agents produce altered states of consciousness such that perceptual experiences of pain and awareness are degraded. This is bringing us fascinating insights into the complex phenomenon of anaesthesia, consciousness and even the concept of self-hood. These topics will be discussed in my talk alongside my ‘side-story’ of life as a scientist combining academic leadership roles with doing science and raising a family.
pain experience coverage
3 items