← Back

Pattern

Topic spotlight
TopicNeuro

pattern classification

Discover seminars, jobs, and research tagged with pattern classification across Neuro.
3 curated items3 Seminars
Updated about 4 years ago
3 items · pattern classification

Latest

3 results
SeminarNeuroscienceRecording

Edge Computing using Spiking Neural Networks

Shirin Dora
Loughborough University
Nov 5, 2021

Deep learning has made tremendous progress in the last year but it's high computational and memory requirements impose challenges in using deep learning on edge devices. There has been some progress in lowering memory requirements of deep neural networks (for instance, use of half-precision) but there has been minimal effort in developing alternative efficient computational paradigms. Inspired by the brain, Spiking Neural Networks (SNN) provide an energy-efficient alternative to conventional rate-based neural networks. However, SNN architectures that employ the traditional feedforward and feedback pass do not fully exploit the asynchronous event-based processing paradigm of SNNs. In the first part of my talk, I will present my work on predictive coding which offers a fundamentally different approach to developing neural networks that are particularly suitable for event-based processing. In the second part of my talk, I will present our work on development of approaches for SNNs that target specific problems like low response latency and continual learning. References Dora, S., Bohte, S. M., & Pennartz, C. (2021). Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy. Frontiers in Computational Neuroscience, 65. Saranirad, V., McGinnity, T. M., Dora, S., & Coyle, D. (2021, July). DoB-SNN: A New Neuron Assembly-Inspired Spiking Neural Network for Pattern Classification. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. Machingal, P., Thousif, M., Dora, S., Sundaram, S., Meng, Q. (2021). A Cross Entropy Loss for Spiking Neural Networks. Expert Systems with Applications (under review).

SeminarNeuroscience

Imaging memory consolidation in wakefulness and sleep

Monika Schönauer
Albert-Ludwigs-Univery of Freiburg
Jun 17, 2021

New memories are initially labile and have to be consolidated into stable long-term representations. Current theories assume that this is supported by a shift in the neural substrate that supports the memory, away from rapidly plastic hippocampal networks towards more stable representations in the neocortex. Rehearsal, i.e. repeated activation of the neural circuits that store a memory, is thought to crucially contribute to the formation of neocortical long-term memory representations. This may either be achieved by repeated study during wakefulness or by a covert reactivation of memory traces during offline periods, such as quiet rest or sleep. My research investigates memory consolidation in the human brain with multivariate decoding of neural processing and non-invasive in-vivo imaging of microstructural plasticity. Using pattern classification on recordings of electrical brain activity, I show that we spontaneously reprocess memories during offline periods in both sleep and wakefulness, and that this reactivation benefits memory retention. In related work, we demonstrate that active rehearsal of learning material during wakefulness can facilitate rapid systems consolidation, leading to an immediate formation of lasting memory engrams in the neocortex. These representations satisfy general mnemonic criteria and cannot only be imaged with fMRI while memories are actively processed but can also be observed with diffusion-weighted imaging when the traces lie dormant. Importantly, sleep seems to hold a crucial role in stabilizing the changes in the contribution of memory systems initiated by rehearsal during wakefulness, indicating that online and offline reactivation might jointly contribute to forming long-term memories. Characterizing the covert processes that decide whether, and in which ways, our brains store new information is crucial to our understanding of memory formation. Directly imaging consolidation thus opens great opportunities for memory research.

SeminarNeuroscience

Co-tuned, balanced excitation and inhibition in olfactory memory networks

Claire Meissner-Bernard
Friedrich lab, Friedrich Miescher Institute, Basel, Switzerland
May 20, 2021

Odor memories are exceptionally robust and essential for the survival of many species. In rodents, the olfactory cortex shows features of an autoassociative memory network and plays a key role in the retrieval of olfactory memories (Meissner-Bernard et al., 2019). Interestingly, the telencephalic area Dp, the zebrafish homolog of olfactory cortex, transiently enters a state of precise balance during the presentation of an odor (Rupprecht and Friedrich, 2018). This state is characterized by large synaptic conductances (relative to the resting conductance) and by co-tuning of excitation and inhibition in odor space and in time at the level of individual neurons. Our aim is to understand how this precise synaptic balance affects memory function. For this purpose, we build a simplified, yet biologically plausible spiking neural network model of Dp using experimental observations as constraints: besides precise balance, key features of Dp dynamics include low firing rates, odor-specific population activity and a dominance of recurrent inputs from Dp neurons relative to afferent inputs from neurons in the olfactory bulb. To achieve co-tuning of excitation and inhibition, we introduce structured connectivity by increasing connection probabilities and/or strength among ensembles of excitatory and inhibitory neurons. These ensembles are therefore structural memories of activity patterns representing specific odors. They form functional inhibitory-stabilized subnetworks, as identified by the “paradoxical effect” signature (Tsodyks et al., 1997): inhibition of inhibitory “memory” neurons leads to an increase of their activity. We investigate the benefits of co-tuning for olfactory and memory processing, by comparing inhibitory-stabilized networks with and without co-tuning. We find that co-tuned excitation and inhibition improves robustness to noise, pattern completion and pattern separation. In other words, retrieval of stored information from partial or degraded sensory inputs is enhanced, which is relevant in light of the instability of the olfactory environment. Furthermore, in co-tuned networks, odor-evoked activation of stored patterns does not persist after removal of the stimulus and may therefore subserve fast pattern classification. These findings provide valuable insights into the computations performed by the olfactory cortex, and into general effects of balanced state dynamics in associative memory networks.

pattern classification coverage

3 items

Seminar3
Domain spotlight

Explore how pattern classification research is advancing inside Neuro.

Visit domain