TopicNeuro

phenomenology

9 Seminars3 ePosters

Latest

SeminarNeuroscience

What it’s like is all there is: The value of Consciousness

Axel Cleeremans
Université Libre de Bruxelles
Mar 7, 2025

Over the past thirty years or so, cognitive neuroscience has made spectacular progress understanding the biological mechanisms of consciousness. Consciousness science, as this field is now sometimes called, was not only inexistent thirty years ago, but its very name seemed like an oxymoron: how can there be a science of consciousness? And yet, despite this scepticism, we are now equipped with a rich set of sophisticated behavioural paradigms, with an impressive array of techniques making it possible to see the brain in action, and with an ever-growing collection of theories and speculations about the putative biological mechanisms through which information processing becomes conscious. This is all good and fine, even promising, but we also seem to have thrown the baby out with the bathwater, or at least to have forgotten it in the crib: consciousness is not just mechanisms, it’s what it feels like. In other words, while we know thousands of informative studies about access-consciousness, we have little in the way of phenomenal consciousness. But that — what it feels like — is truly what “consciousness” is about. Understanding why it feels like something to be me and nothing (panpsychists notwithstanding) for a stone to be a stone is what the field has always been after. However, while it is relatively easy to study access-consciousness through the contrastive approach applied to reports, it is much less clear how to study phenomenology, its structure and its function. Here, I first overview work on what consciousness does (the "how"). Next, I ask what difference feeling things makes and what function phenomenology might play. I argue that subjective experience has intrinsic value and plays a functional role in everything that we do.

SeminarNeuroscience

Epileptic micronetworks and their clinical relevance

Michael Wenzel
Bonn University
Mar 13, 2024

A core aspect of clinical epileptology revolves around relating epileptic field potentials to underlying neural sources (e.g. an “epileptogenic focus”). Yet still, how neural population activity relates to epileptic field potentials and ultimately clinical phenomenology, remains far from being understood. After a brief overview on this topic, this seminar will focus on unpublished work, with an emphasis on seizure-related focal spreading depression. The presented results will include hippocampal and neocortical chronic in vivo two-photon population imaging and local field potential recordings of epileptic micronetworks in mice, in the context of viral encephalitis or optogenetic stimulation. The findings are corroborated by invasive depth electrode recordings (macroelectrodes and BF microwires) in epilepsy patients during pre-surgical evaluation. The presented work carries general implications for clinical epileptology, and basic epilepsy research.

SeminarNeuroscienceRecording

Orientation selectivity in rodent V1: theory vs experiments

German Mato
CONICET, Bariloche
Feb 15, 2023

Neurons in the primary visual cortex (V1) of rodents are selective to the orientation of the stimulus, as in other mammals such as cats and monkeys. However, in contrast with those species, their neurons display a very different type of spatial organization. Instead of orientation maps they are organized in a “salt and pepper” pattern, where adjacent neurons have completely different preferred orientations. This structure has motivated both experimental and theoretical research with the objective of determining which aspects of the connectivity patterns and intrinsic neuronal responses can explain the observed behavior. These analysis have to take into account also that the neurons of the thalamus that send their outputs to the cortex have more complex responses in rodents than in higher mammals, displaying, for instance, a significant degree of orientation selectivity. In this talk we present work showing that a random feed-forward connectivity pattern, in which the probability of having a connection between a cortical neuron and a thalamic neuron depends only on the relative distance between them is enough explain several aspects of the complex phenomenology found in these systems. Moreover, this approach allows us to evaluate analytically the statistical structure of the thalamic input on the cortex. We find that V1 neurons are orientation selective but the preferred orientation of the stimulus depends on the spatial frequency of the stimulus. We disentangle the effect of the non circular thalamic receptive fields, finding that they control the selectivity of the time-averaged thalamic input, but not the selectivity of the time locked component. We also compare with experiments that use reverse correlation techniques, showing that ON and OFF components of the aggregate thalamic input are spatially segregated in the cortex.

SeminarNeuroscienceRecording

Of Grids and Maps

Matteo Grasso
University of Wisconsin-Madison, USA
Nov 16, 2021

Neuroscientific methods successfully account for a system’s functional properties, but leave out the subjective properties of the accompanying experience. According to IIT, phenomenology can be studied scientifically by unfolding the cause-effect structure specified by a system. To illustrate how, in this talk I compare two systems (a grid and a map) to show that they can be functionally equivalent in performing fixation, but only one can specify a cause-effect structure that accounts for the extendedness of phenomenal space.

SeminarNeuroscience

Integrated Information Theory and Its Implications for Free Will

Giulio Tononi
University of Wisconsin-Madison
Jun 25, 2021

Integrated information theory (IIT) takes as its starting point phenomenology, rather than behavioral, functional, or neural correlates of consciousness. The theory characterizes the essential properties of phenomenal existence—which is immediate and indubitable. These are translated into physical properties, expressed operationally as cause-effect power, which must be satisfied by the neural substrate of consciousness. On this basis, the theory can account for clinical and experimental data about the presence and absence of consciousness. Current work aims at accounting for specific qualities of different experiences, such as spatial extendedness and the flow of time. Several implications of IIT have ethical relevance. One is that functional equivalence does not imply phenomenal equivalence—computers may one day be able to do everything we do, but they will not experience anything. Another is that we do have free will in the fundamental, metaphysical sense—we have true alternatives and we, not our neurons, are the true cause of our willed actions.

ePosterNeuroscience

Phenomenology and functional significance of the Vertex Potential

Richard Somervail, Eros Quarta, Diego Benusiglio, Sofija Perovic, Rory J. Bufacchi, Alexandra Battaglia-Mayer, Giandomenico Iannetti
ePosterNeuroscience

Parallels between Intuitionistic Mathematics and Neurophenomenology

Brian McCorkle

Neuromatch 5

ePosterNeuroscience

Research Methods in Cognition Studies & Phenomenology - Challenges and Opportunities

Amanda Nelson

Neuromatch 5

phenomenology coverage

12 items

Seminar9
ePoster3
Domain spotlight

Explore how phenomenology research is advancing inside Neuro.

Visit domain