population recordings
Latest
Neural mechanisms of optimal performance
When we attend a demanding task, our performance is poor at low arousal (when drowsy) or high arousal (when anxious), but we achieve optimal performance at intermediate arousal. This celebrated Yerkes-Dodson inverted-U law relating performance and arousal is colloquially referred to as being "in the zone." In this talk, I will elucidate the behavioral and neural mechanisms linking arousal and performance under the Yerkes-Dodson law in a mouse model. During decision-making tasks, mice express an array of discrete strategies, whereby the optimal strategy occurs at intermediate arousal, measured by pupil, consistent with the inverted-U law. Population recordings from the auditory cortex (A1) further revealed that sound encoding is optimal at intermediate arousal. To explain the computational principle underlying this inverted-U law, we modeled the A1 circuit as a spiking network with excitatory/inhibitory clusters, based on the observed functional clusters in A1. Arousal induced a transition from a multi-attractor (low arousal) to a single attractor phase (high arousal), and performance is optimized at the transition point. The model also predicts stimulus- and arousal-induced modulations of neural variability, which we confirmed in the data. Our theory suggests that a single unifying dynamical principle, phase transitions in metastable dynamics, underlies both the inverted-U law of optimal performance and state-dependent modulations of neural variability.
Brain circuits for spatial navigation
In this webinar on spatial navigation circuits, three researchers—Ann Hermundstad, Ila Fiete, and Barbara Webb—discussed how diverse species solve navigation problems using specialized yet evolutionarily conserved brain structures. Hermundstad illustrated the fruit fly’s central complex, focusing on how hardwired circuit motifs (e.g., sinusoidal steering curves) enable rapid, flexible learning of goal-directed navigation. This framework combines internal heading representations with modifiable goal signals, leveraging activity-dependent plasticity to adapt to new environments. Fiete explored the mammalian head-direction system, demonstrating how population recordings reveal a one-dimensional ring attractor underlying continuous integration of angular velocity. She showed that key theoretical predictions—low-dimensional manifold structure, isometry, uniform stability—are experimentally validated, underscoring parallels to insect circuits. Finally, Webb described honeybee navigation, featuring path integration, vector memories, route optimization, and the famous waggle dance. She proposed that allocentric velocity signals and vector manipulation within the central complex can encode and transmit distances and directions, enabling both sophisticated foraging and inter-bee communication via dance-based cues.
Modularity and Robustness of Frontal Cortical Networks
Nuo Li (Baylor College of Medicine, USA) shares novel insights into coordinated interhemispheric large-scale neural network activity underpinning short-term memory in mice. Relevant techniques covered include: simultaneous multi-regional recordings using multiple 64-channel H probes during head-fixed behavior in mice. simultaneous optogenetics and population recording. analysis of population recordings to infer interactions between brain regions. Reference: Chen G, Kang B, Lindsey J, Druckmann S, Li N, (2021). Modularity and robustness of frontal cortex networks. Cell, 184(14):3717-3730.
Population dynamics of the thalamic head direction system during drift and reorientation
The head direction (HD) system is classically modeled as a ring attractor network which ensures a stable representation of the animal’s head direction. This unidimensional description popularized the view of the HD system as the brain’s internal compass. However, unlike a globally consistent magnetic compass, the orientation of the HD system is dynamic, depends on local cues and exhibits remapping across familiar environments5. Such a system requires mechanisms to remember and align to familiar landmarks, which may not be well described within the classic 1-dimensional framework. To search for these mechanisms, we performed large population recordings of mouse thalamic HD cells using calcium imaging, during controlled manipulations of a visual landmark in a familiar environment. First, we find that realignment of the system was associated with a continuous rotation of the HD network representation. The speed and angular distance of this rotation was predicted by a 2nd dimension to the ring attractor which we refer to as network gain, i.e. the instantaneous population firing rate. Moreover, the 360-degree azimuthal profile of network gain, during darkness, maintained a ‘memory trace’ of a previously displayed visual landmark. In a 2nd experiment, brief presentations of a rotated landmark revealed an attraction of the network back to its initial orientation, suggesting a time-dependent mechanism underlying the formation of these network gain memory traces. Finally, in a 3rd experiment, continuous rotation of a visual landmark induced a similar rotation of the HD representation which persisted following removal of the landmark, demonstrating that HD network orientation is subject to experience-dependent recalibration. Together, these results provide new mechanistic insights into how the neural compass flexibly adapts to environmental cues to maintain a reliable representation of the head direction.
Neuronal variability and spatiotemporal dynamics in cortical network models
Neuronal variability is a reflection of recurrent circuitry and cellular physiology. The modulation of neuronal variability is a reliable signature of cognitive and processing state. A pervasive yet puzzling feature of cortical circuits is that despite their complex wiring, population-wide shared spiking variability is low dimensional with all neurons fluctuating en masse. We show that the spatiotemporal dynamics in a spatially structured network produce large population-wide shared variability. When the spatial and temporal scales of inhibitory coupling match known physiology, model spiking neurons naturally generate low dimensional shared variability that captures in vivo population recordings along the visual pathway. Further, we show that firing rate models with spatial coupling can also generate chaotic and low-dimensional rate dynamics. The chaotic parameter region expands when the network is driven by correlated noisy inputs, while being insensitive to the intensity of independent noise.
Detecting Covert Cognitive States from Neural Population Recordings in Prefrontal Cortex
The neural mechanisms underlying decision-making are typically examined by statistical analysis of large numbers of trials from sequentially recorded single neurons. Averaging across sequential recordings, however, obscures important aspects of decision-making such as variations in confidence and 'changes of mind' (CoM) that occur at variable times on different trials. I will show that the covert decision variables (DV) can be tracked dynamically on single behavioral trials via simultaneous recording of large neural populations in prefrontal cortex. Vacillations of the neural DV, in turn, identify candidate CoM in monkeys, which closely match the known properties of human CoM. Thus simultaneous population recordings can provide insight into transient, internal cognitive states that are otherwise undetectable.
population recordings coverage
6 items