Latest

SeminarNeuroscienceRecording

Learning in pain: probabilistic inference and (mal)adaptive control

Flavia Mancini
Department of Engineering
Apr 20, 2021

Pain is a major clinical problem affecting 1 in 5 people in the world. There are unresolved questions that urgently require answers to treat pain effectively, a crucial one being how the feeling of pain arises from brain activity. Computational models of pain consider how the brain processes noxious information and allow mapping neural circuits and networks to cognition and behaviour. To date, they have generally have assumed two largely independent processes: perceptual and/or predictive inference, typically modelled as an approximate Bayesian process, and action control, typically modelled as a reinforcement learning process. However, inference and control are intertwined in complex ways, challenging the clarity of this distinction. I will discuss how they may comprise a parallel hierarchical architecture that combines pain inference, information-seeking, and adaptive value-based control. Finally, I will discuss whether and how these learning processes might contribute to chronic pain.

predictive inference coverage

1 items

Seminar1
Domain spotlight

Explore how predictive inference research is advancing inside Neuro.

Visit domain