prosthetics
Latest
Neurosurgery & Consciousness: Bridging Science and Philosophy in the Age of AI
Overview of neurosurgery specialty interplay between neurology, psychiatry and neurosurgery. Discussion on benefits and disadvantages of classifications. Presentation of sub-specialties: trauma, oncology, functional, pediatric, vascular and spine. How does an ordinary day of a neurosurgeon look like; outpatient clinic, emergencies, pre/intra/post operative patient care. An ordinary operation. Myth-busting and practical insights of every day practice. An ordinary operation. Hint for research on clinical problems to be solved. The coming ethical frontiers of neuroprosthetics. In part two we will explore the explanatory gap and its significance. We will review the more than 200 theories of the hard problem of consciousness, from the prevailing to the unconventional. Finally, we are going to reflect on the AI advancements and the claims of LLMs becoming conscious
Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities; Spatial filtering to enhance signal processing in invasive neurophysiology
On Thursday February 15th, we will host Victoria Peterson and Julian Neumann. Victoria will tell us about “Spatial filtering to enhance signal processing in invasive neurophysiology”. Besides his scientific presentation on “Closed-loop deep brain stimulation as a neuroprosthetic of dopaminergic circuits – Current evidence and future opportunities”, Julian will give us a glimpse at the person behind the science. The talks will be followed by a shared discussion. Note: The talks will exceptionally be held at 10 ET / 4PM CET. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!
Towards thalamic visual prosthetics
Mutation targeted gene therapy approaches to alter rod degeneration and retain cones
My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.
Neuropunk revolution and its implementation via real-time neurosimulations and their integrations
In this talk I present the perspectives of the "neuropunk revolution'' technologies. One could understand the "neuropunk revolution'' as the integration of real-time neurosimulations into biological nervous/motor systems via neurostimulation or artificial robotic systems via integration with actuators. I see the added value of the real-time neurosimulations as bridge technology for the set of developed technologies: BCI, neuroprosthetics, AI, robotics to provide bio-compatible integration into biological or artificial limbs. Here I present the three types of integration of the "neuropunk revolution'' technologies as inbound, outbound and closed-loop in-outbound systems. I see the shift of the perspective of how we see now the set of technologies including AI, BCI, neuroprosthetics and robotics due to the proposed concept for example the integration of external to a body simulated part of the nervous system back into the biological nervous system or muscles.
Interactions between neurons during visual perception and restoring them in blindness
I will discuss the mechanisms that determine whether a weak visual stimulus will reach consciousness or not. If the stimulus is simple, early visual cortex acts as a relay station that sends the information to higher visual areas. If the stimulus arrives at a minimal strength, it will be stored in working memory. However, during more complex visual perceptions, which for example depend on the segregation of a figure from the background, early visual cortex’ role goes beyond a simply relay. It now acts as a cognitive blackboard and conscious perception depends on it. Our results also inspire new approaches to create a visual prosthesis for the blind, by creating a direct interface with the visual cortex. I will discuss how high-channel-number interfaces with the visual cortex might be used to restore a rudimentary form of vision in blind individuals.
Electronics on the brain
One of the most important scientific and technological frontiers of our time is the interfacing of electronics with the human brain. This endeavour promises to help understand how the brain works and deliver new tools for diagnosis and treatment of pathologies including epilepsy and Parkinson’s disease. Current solutions, however, are limited by the materials that are brought in contact with the tissue and transduce signals across the biotic/abiotic interface. Recent advances in electronics have made available materials with a unique combination of attractive properties, including mechanical flexibility, mixed ionic/electronic conduction, enhanced biocompatibility, and capability for drug delivery. Professor Malliaras will present examples of novel devices for recording and stimulation of neurons and show that organic electronic materials offer tremendous opportunities to study the brain and treat its pathologies.
An interdisciplinary perspective on motor augmentation from neuroscience and design
By studying the neural correlates of hand augmentation, we are exploring the boundaries of neuroplasticity seeing how it can be harnessed to improve the usability and control of prosthetic devices. Tamar Makin and Dani Clode each discuss their research and perspectives within the field of prosthetics that has led to this unique collaboration and exploration of motor augmentation and the brain.
Microneurography And Microstimulation Of Single Tactile Afferents In The Human Hand
Microneurography is a method, invented by Ake Vallbo and Karl-Erik Hagbarth in the late 1960, with which we can record the activity from single, identified nerve fibres in awake human participants. In this talk, I will then discuss the method, its advantages and limitations, and some of the key discoveries regarding coding of tactile events in the signalling from receptors in the human skin. An extension of the method is to stimulate single afferents, and record the resulting tactile sensations reported by the participants, so-called microstimulation. The first experiments were done in the 1980s, but the method has recently seen a revival, and is currently being combined with high-resolution brain imaging in the study of the relationship between tactile nerve signals, sensations, and processing of tactile information in the brain.
prosthetics coverage
9 items