recurrent computations
Latest
Synthetic and natural images unlock the power of recurrency in primary visual cortex
During perception the visual system integrates current sensory evidence with previously acquired knowledge of the visual world. Presumably this computation relies on internal recurrent interactions. We record populations of neurons from the primary visual cortex of cats and macaque monkeys and find evidence for adaptive internal responses to structured stimulation that change on both slow and fast timescales. In the first experiment, we present abstract images, only briefly, a protocol known to produce strong and persistent recurrent responses in the primary visual cortex. We show that repetitive presentations of a large randomized set of images leads to enhanced stimulus encoding on a timescale of minutes to hours. The enhanced encoding preserves the representational details required for image reconstruction and can be detected in post-exposure spontaneous activity. In a second experiment, we show that the encoding of natural scenes across populations of V1 neurons is improved, over a timescale of hundreds of milliseconds, with the allocation of spatial attention. Given the hierarchical organization of the visual cortex, contextual information from the higher levels of the processing hierarchy, reflecting high-level image regularities, can inform the activity in V1 through feedback. We hypothesize that these fast attentional boosts in stimulus encoding rely on recurrent computations that capitalize on the presence of high-level visual features in natural scenes. We design control images dominated by low-level features and show that, in agreement with our hypothesis, the attentional benefits in stimulus encoding vanish. We conclude that, in the visual system, powerful recurrent processes optimize neuronal responses, already at the earliest stages of cortical processing.
Towards a neurally mechanistic understanding of visual cognition
I am interested in developing a neurally mechanistic understanding of how primate brains represent the world through its visual system and how such representations enable a remarkable set of intelligent behaviors. In this talk, I will primarily highlight aspects of my current research that focuses on dissecting the brain circuits that support core object recognition behavior (primates’ ability to categorize objects within hundreds of milliseconds) in non-human primates. On the one hand, my work empirically examines how well computational models of the primate ventral visual pathways embed knowledge of the visual brain function (e.g., Bashivan*, Kar*, DiCarlo, Science, 2019). On the other hand, my work has led to various functional and architectural insights that help improve such brain models. For instance, we have exposed the necessity of recurrent computations in primate core object recognition (Kar et al., Nature Neuroscience, 2019), one that is strikingly missing from most feedforward artificial neural network models. Specifically, we have observed that the primate ventral stream requires fast recurrent processing via ventrolateral PFC for robust core object recognition (Kar and DiCarlo, Neuron, 2021). In addition, I have been currently developing various chemogenetic strategies to causally target specific bidirectional neural circuits in the macaque brain during multiple object recognition tasks to further probe their relevance during this behavior. I plan to transform these data and insights into tangible progress in neuroscience via my collaboration with various computational groups and building improved brain models of object recognition. I hope to end the talk with a brief glimpse of some of my planned future work!
recurrent computations coverage
2 items