sensory experiences
Latest
Geometry of concept learning
Understanding Human ability to learn novel concepts from just a few sensory experiences is a fundamental problem in cognitive neuroscience. I will describe a recent work with Ben Sorcher and Surya Ganguli (PNAS, October 2022) in which we propose a simple, biologically plausible, and mathematically tractable neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas. Discrimination between novel concepts is performed by downstream neurons implementing ‘prototype’ decision rule, in which a test example is classified according to the nearest prototype constructed from the few training examples. We show that prototype few-shot learning achieves high few-shot learning accuracy on natural visual concepts using both macaque inferotemporal cortex representations and deep neural network (DNN) models of these representations. We develop a mathematical theory that links few-shot learning to the geometric properties of the neural concept manifolds and demonstrate its agreement with our numerical simulations across different DNNs as well as different layers. Intriguingly, we observe striking mismatches between the geometry of manifolds in intermediate stages of the primate visual pathway and in trained DNNs. Finally, we show that linguistic descriptors of visual concepts can be used to discriminate images belonging to novel concepts, without any prior visual experience of these concepts (a task known as ‘zero-shot’ learning), indicated a remarkable alignment of manifold representations of concepts in visual and language modalities. I will discuss ongoing effort to extend this work to other high level cognitive tasks.
The brain: A coincidence detector between sensory experiences and internal milieu
Understanding the brain is not only intrinsically fascinating, but also highly relevant to increase our well-being since our brain exhibits a power over the body that makes it capable both of provoking illness or facilitating the healing process. Bearing in mind this dark force, brain sciences have undergone and will undergo an important revolution, redefining its boundaries beyond the cranial cavity. During this presentation, we will discuss about the communication between the brain and other systems that shapes how we feel the external word and how we think. We are starting to unravel how our organs talk to the brain and how the brain talks back. That two-way communication encompasses a complex, bodywide system of nerves, hormones and other signals that we will discussed. This presentation aims at challenging a long history of thinking of bodily regulation as separate from "higher" mental processes. Four centuries ago, René Descartes famously conceptualized the mind as being separate from the body, it is time now to embody our mind.
NMC4 Keynote: Formation and update of sensory priors in working memory and perceptual decision making tasks
The world around us is complex, but at the same time full of meaningful regularities. We can detect, learn and exploit these regularities automatically in an unsupervised manner i.e. without any direct instruction or explicit reward. For example, we effortlessly estimate the average tallness of people in a room, or the boundaries between words in a language. These regularities and prior knowledge, once learned, can affect the way we acquire and interpret new information to build and update our internal model of the world for future decision-making processes. Despite the ubiquity of passively learning from the structured information in the environment, the mechanisms that support learning from real-world experience are largely unknown. By combing sophisticated cognitive tasks in human and rats, neuronal measurements and perturbations in rat and network modelling, we aim to build a multi-level description of how sensory history is utilised in inferring regularities in temporally extended tasks. In this talk, I will specifically focus on a comparative rat and human model, in combination with neural network models to study how past sensory experiences are utilized to impact working memory and decision making behaviours.
Visual association cortex immediately reactivates sensory experiences
COSYNE 2022
Visual association cortex immediately reactivates sensory experiences
COSYNE 2022
sensory experiences coverage
5 items