statistical modeling
Latest
OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis
In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.
Cognitive Psychometrics: Statistical Modeling of Individual Differences in Latent Processes
Many psychological theories assume that qualitatively different cognitive processes can result in identical responses. Multinomial processing tree (MPT) models allow researchers to disentangle latent cognitive processes based on observed response frequencies. Recently, MPT models have been extended to explicitly account for participant and item heterogeneity. These hierarchical Bayesian MPT models provide the opportunity to connect two traditionally isolated disciplines. Whereas cognitive psychology has often focused on the experimental validation of MPT model parameters on the group level, psychometrics provides the necessary concepts and tools for measuring differences in MPT parameters on the item or person level. Moreover, MPT parameters can be regressed on covariates to model latent processes as a function of personality traits or other person characteristics.
statistical modeling coverage
2 items