tetrachromatic
Latest
Young IBRO NextInNeuro Webinar - The retinal basis of colour vision: from fish to humans
Colour vision is based on circuit-level comparison of the signals from spectral distinct types of photoreceptors. In our own eyes, the presence of three types of cones enable trichromatic colour vision. However, many phylogenetically ‘older’ vertebrates have four or more cone types, and in almost all their cases the circuits that enable tetra- or possibly even pentachromatic colour vision are not known. This includes the majority of birds, reptiles, amphibians, and bony fish. In the lab we study neuronal circuits for colour vision in non-mammalian vertebrates, with a focus on zebrafish, a tetrachromatic surface dwelling species of teleost. I will discuss how in the case of zebrafish, retinal colour computations are implemented in a fundamentally different, and probably much more efficient way compared to how they are thought to work in humans. I will then highlight how these fish circuits might be linked with those in mammals, possibly providing a new way of thinking about how circuits for colour vision are organized in vertebrates.
tetrachromatic coverage
1 items