timing
Latest
Structural & Functional Neuroplasticity in Children with Hemiplegia
About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.
Vision for perception versus vision for action: dissociable contributions of visual sensory drives from primary visual cortex and superior colliculus neurons to orienting behaviors
The primary visual cortex (V1) directly projects to the superior colliculus (SC) and is believed to provide sensory drive for eye movements. Consistent with this, a majority of saccade-related SC neurons also exhibit short-latency, stimulus-driven visual responses, which are additionally feature-tuned. However, direct neurophysiological comparisons of the visual response properties of the two anatomically-connected brain areas are surprisingly lacking, especially with respect to active looking behaviors. I will describe a series of experiments characterizing visual response properties in primate V1 and SC neurons, exploring feature dimensions like visual field location, spatial frequency, orientation, contrast, and luminance polarity. The results suggest a substantial, qualitative reformatting of SC visual responses when compared to V1. For example, SC visual response latencies are actively delayed, independent of individual neuron tuning preferences, as a function of increasing spatial frequency, and this phenomenon is directly correlated with saccadic reaction times. Such “coarse-to-fine” rank ordering of SC visual response latencies as a function of spatial frequency is much weaker in V1, suggesting a dissociation of V1 responses from saccade timing. Consistent with this, when we next explored trial-by-trial correlations of individual neurons’ visual response strengths and visual response latencies with saccadic reaction times, we found that most SC neurons exhibited, on a trial-by-trial basis, stronger and earlier visual responses for faster saccadic reaction times. Moreover, these correlations were substantially higher for visual-motor neurons in the intermediate and deep layers than for more superficial visual-only neurons. No such correlations existed systematically in V1. Thus, visual responses in SC and V1 serve fundamentally different roles in active vision: V1 jumpstarts sensing and image analysis, but SC jumpstarts moving. I will finish by demonstrating, using V1 reversible inactivation, that, despite reformatting of signals from V1 to the brainstem, V1 is still a necessary gateway for visually-driven oculomotor responses to occur, even for the most reflexive of eye movement phenomena. This is a fundamental difference from rodent studies demonstrating clear V1-independent processing in afferent visual pathways bypassing the geniculostriate one, and it demonstrates the importance of multi-species comparisons in the study of oculomotor control.
There’s more to timing than time: P-centers, beat bins and groove in musical microrhythm
How does the dynamic shape of a sound affect its perceived microtiming? In the TIME project, we studied basic aspects of musical microrhythm, exploring both stimulus features and the participants’ enculturated expertise via perception experiments, observational studies of how musicians produce particular microrhythms, and ethnographic studies of musicians’ descriptions of microrhythm. Collectively, we show that altering the microstructure of a sound (“what” the sound is) changes its perceived temporal location (“when” it occurs). Specifically, there are systematic effects of core acoustic factors (duration, attack) on perceived timing. Microrhythmic features in longer and more complex sounds can also give rise to different perceptions of the same sound. Our results shed light on conflicting results regarding the effect of microtiming on the “grooviness” of a rhythm.
Cell-type-specific plasticity shapes neocortical dynamics for motor learning
How do cortical circuits acquire new dynamics that drive learned movements? This webinar will focus on mouse premotor cortex in relation to learned lick-timing and explore high-density electrophysiology using our silicon neural probes alongside region and cell-type-specific acute genetic manipulations of proteins required for synaptic plasticity.
How are the epileptogenesis clocks ticking?
The epileptogenesis process is associated with large-scale changes in gene expression, which contribute to the remodelling of brain networks permanently altering excitability. About 80% of the protein coding genes are under the influence of the circadian rhythms. These are 24-hour endogenous rhythms that determine a large number of daily changes in physiology and behavior in our bodies. In the brain, the master clock regulates a large number of pathways that are important during epileptogenesis and established-epilepsy, such as neurotransmission, synaptic homeostasis, inflammation, blood-brain barrier among others. In-depth mapping of the molecular basis of circadian timing in the brain is key for a complete understanding of the cellular and molecular events connecting genes to phenotypes.
Time perception in film viewing as a function of film editing
Filmmakers and editors have empirically developed techniques to ensure the spatiotemporal continuity of a film's narration. In terms of time, editing techniques (e.g., elliptical, overlapping, or cut minimization) allow for the manipulation of the perceived duration of events as they unfold on screen. More specifically, a scene can be edited to be time compressed, expanded, or real-time in terms of its perceived duration. Despite the consistent application of these techniques in filmmaking, their perceptual outcomes have not been experimentally validated. Given that viewing a film is experienced as a precise simulation of the physical world, the use of cinematic material to examine aspects of time perception allows for experimentation with high ecological validity, while filmmakers gain more insight on how empirically developed techniques influence viewers' time percept. Here, we investigated how such time manipulation techniques of an action affect a scene's perceived duration. Specifically, we presented videos depicting different actions (e.g., a woman talking on the phone), edited according to the techniques applied for temporal manipulation and asked participants to make verbal estimations of the presented scenes' perceived durations. Analysis of data revealed that the duration of expanded scenes was significantly overestimated as compared to that of compressed and real-time scenes, as was the duration of real-time scenes as compared to that of compressed scenes. Therefore, our results validate the empirical techniques applied for the modulation of a scene's perceived duration. We also found interactions on time estimates of scene type and editing technique as a function of the characteristics and the action of the scene presented. Thus, these findings add to the discussion that the content and characteristics of a scene, along with the editing technique applied, can also modulate perceived duration. Our findings are discussed by considering current timing frameworks, as well as attentional saliency algorithms measuring the visual saliency of the presented stimuli.
The Role of Spatial and Contextual Relations of real world objects in Interval Timing
In the real world, object arrangement follows a number of rules. Some of the rules pertain to the spatial relations between objects and scenes (i.e., syntactic rules) and others about the contextual relations (i.e., semantic rules). Research has shown that violation of semantic rules influences interval timing with the duration of scenes containing such violations to be overestimated as compared to scenes with no violations. However, no study has yet investigated whether both semantic and syntactic violations can affect timing in the same way. Furthermore, it is unclear whether the effect of scene violations on timing is due to attentional or other cognitive accounts. Using an oddball paradigm and real-world scenes with or without semantic and syntactic violations, we conducted two experiments on whether time dilation will be obtained in the presence of any type of scene violation and the role of attention in any such effect. Our results from Experiment 1 showed that time dilation indeed occurred in the presence of syntactic violations, while time compression was observed for semantic violations. In Experiment 2, we further investigated whether these estimations were driven by attentional accounts, by utilizing a contrast manipulation of the target objects. The results showed that an increased contrast led to duration overestimation for both semantic and syntactic oddballs. Together, our results indicate that scene violations differentially affect timing due to violation processing differences and, moreover, their effect on timing seems to be sensitive to attentional manipulations such as target contrast.
Bayesian expectation in the perception of the timing of stimulus sequences
In the current virtual journal club Dr Di Luca will present findings from a series of psychophysical investigations where he measured sensitivity and bias in the perception of the timing of stimuli. He will present how improved detection with longer sequences and biases in reporting isochrony can be accounted for by optimal statistical predictions. Among his findings was also that the timing of stimuli that occasionally deviate from a regularly paced sequence is perceptually distorted to appear more regular. Such change depends on whether the context these sequences are presented is also regular. Dr Di Luca will present a Bayesian model for the combination of dynamically updated expectations, in the form of a priori probability, with incoming sensory information. These findings contribute to the understanding of how the brain processes temporal information to shape perceptual experiences.
Neural Mechanisms of Subsecond Temporal Encoding in Primary Visual Cortex
Subsecond timing underlies nearly all sensory and motor activities across species and is critical to survival. While subsecond temporal information has been found across cortical and subcortical regions, it is unclear if it is generated locally and intrinsically or if it is a read out of a centralized clock-like mechanism. Indeed, mechanisms of subsecond timing at the circuit level are largely obscure. Primary sensory areas are well-suited to address these question as they have early access to sensory information and provide minimal processing to it: if temporal information is found in these regions, it is likely to be generated intrinsically and locally. We test this hypothesis by training mice to perform an audio-visual temporal pattern sensory discrimination task as we use 2-photon calcium imaging, a technique capable of recording population level activity at single cell resolution, to record activity in primary visual cortex (V1). We have found significant changes in network dynamics through mice’s learning of the task from naive to middle to expert levels. Changes in network dynamics and behavioral performance are well accounted for by an intrinsic model of timing in which the trajectory of q network through high dimensional state space represents temporal sensory information. Conversely, while we found evidence of other temporal encoding models, such as oscillatory activity, we did not find that they accounted for increased performance but were in fact correlated with the intrinsic model itself. These results provide insight into how subsecond temporal information is encoded mechanistically at the circuit level.
Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment
Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.
Movements and engagement during decision-making
When experts are immersed in a task, a natural assumption is that their brains prioritize task-related activity. Accordingly, most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. Surprisingly, we observed that during decision-making, the cortex-wide activity of multiple cell types is dominated by movements, especially “uninstructed movements”, that are spontaneously expressed. These observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity. To understand the relationship between these movements and decision-making, we examined the movements more closely. We tested whether the magnitude or the timing of the movements was correlated with decision-making performance. To do this, we partitioned movements into two groups: task-aligned movements that were well predicted by task events (such as the onset of the sensory stimulus or choice) and task independent movement (TIM) that occurred independently of task events. TIM had a reliable, inverse correlation with performance in head-restrained mice and freely moving rats. This hinted that the timing of spontaneous movements could indicate periods of disengagement. To confirm this, we compared TIM to the latent behavioral states recovered by a hidden Markov model with Bernoulli generalized linear model observations (GLM-HMM) and found these, again, to be inversely correlated. Finally, we examined the impact of these behavioral states on neural activity. Surprisingly, we found that the same movement impacts neural activity more strongly when animals are disengaged. An intriguing possibility is that these larger movement signals disrupt cognitive computations, leading to poor decision-making performance. Taken together, these observations argue that movements and cognitionare closely intertwined, even during expert decision-making.
Movement planning as a window into hierarchical motor control
The ability to organise one's body for action without having to think about it is taken for granted, whether it is handwriting, typing on a smartphone or computer keyboard, tying a shoelace or playing the piano. When compromised, e.g. in stroke, neurodegenerative and developmental disorders, the individuals’ study, work and day-to-day living are impacted with high societal costs. Until recently, indirect methods such as invasive recordings in animal models, computer simulations, and behavioural markers during sequence execution have been used to study covert motor sequence planning in humans. In this talk, I will demonstrate how multivariate pattern analyses of non-invasive neurophysiological recordings (MEG/EEG), fMRI, and muscular recordings, combined with a new behavioural paradigm, can help us investigate the structure and dynamics of motor sequence control before and after movement execution. Across paradigms, participants learned to retrieve and produce sequences of finger presses from long-term memory. Our findings suggest that sequence planning involves parallel pre-ordering of serial elements of the upcoming sequence, rather than a preparation of a serial trajectory of activation states. Additionally, we observed that the human neocortex automatically reorganizes the order and timing of well-trained movement sequences retrieved from memory into lower and higher-level representations on a trial-by-trial basis. This echoes behavioural transfer across task contexts and flexibility in the final hundreds of milliseconds before movement execution. These findings strongly support a hierarchical and dynamic model of skilled sequence control across the peri-movement phase, which may have implications for clinical interventions.
Learning to Express Reward Prediction Error-like Dopaminergic Activity Requires Plastic Representations of Time
The dominant theoretical framework to account for reinforcement learning in the brain is temporal difference (TD) reinforcement learning. The TD framework predicts that some neuronal elements should represent the reward prediction error (RPE), which means they signal the difference between the expected future rewards and the actual rewards. The prominence of the TD theory arises from the observation that firing properties of dopaminergic neurons in the ventral tegmental area appear similar to those of RPE model-neurons in TD learning. Previous implementations of TD learning assume a fixed temporal basis for each stimulus that might eventually predict a reward. Here we show that such a fixed temporal basis is implausible and that certain predictions of TD learning are inconsistent with experiments. We propose instead an alternative theoretical framework, coined FLEX (Flexibly Learned Errors in Expected Reward). In FLEX, feature specific representations of time are learned, allowing for neural representations of stimuli to adjust their timing and relation to rewards in an online manner. In FLEX dopamine acts as an instructive signal which helps build temporal models of the environment. FLEX is a general theoretical framework that has many possible biophysical implementations. In order to show that FLEX is a feasible approach, we present a specific biophysically plausible model which implements the principles of FLEX. We show that this implementation can account for various reinforcement learning paradigms, and that its results and predictions are consistent with a preponderance of both existing and reanalyzed experimental data.
Internal representation of musical rhythm: transformation from sound to periodic beat
When listening to music, humans readily perceive and move along with a periodic beat. Critically, perception of a periodic beat is commonly elicited by rhythmic stimuli with physical features arranged in a way that is not strictly periodic. Hence, beat perception must capitalize on mechanisms that transform stimulus features into a temporally recurrent format with emphasized beat periodicity. Here, I will present a line of work that aims to clarify the nature and neural basis of this transformation. In these studies, electrophysiological activity was recorded as participants listened to rhythms known to induce perception of a consistent beat across healthy Western adults. The results show that the human brain selectively emphasizes beat representation when it is not acoustically prominent in the stimulus, and this transformation (i) can be captured non-invasively using surface EEG in adult participants, (ii) is already in place in 5- to 6-month-old infants, and (iii) cannot be fully explained by subcortical auditory nonlinearities. Moreover, as revealed by human intracerebral recordings, a prominent beat representation emerges already in the primary auditory cortex. Finally, electrophysiological recordings from the auditory cortex of a rhesus monkey show a significant enhancement of beat periodicities in this area, similar to humans. Taken together, these findings indicate an early, general auditory cortical stage of processing by which rhythmic inputs are rendered more temporally recurrent than they are in reality. Already present in non-human primates and human infants, this "periodized" default format could then be shaped by higher-level associative sensory-motor areas and guide movement in individuals with strongly coupled auditory and motor systems. Together, this highlights the multiplicity of neural processes supporting coordinated musical behaviors widely observed across human cultures.The experiments herein include: a motor timing task comparing the effects of movement vs non-movement with and without feedback (Exp. 1A & 1B), a transcranial magnetic stimulation (TMS) study on the role of the supplementary motor area (SMA) in transforming temporal information (Exp. 2), and a perceptual timing task investigating the effect of noisy movement on time perception with both visual and auditory modalities (Exp. 3A & 3B). Together, the results of these studies support the Bayesian cue combination framework, in that: movement improves the precision of time perception not only in perceptual timing tasks but also motor timing tasks (Exp. 1A & 1B), stimulating the SMA appears to disrupt the transformation of temporal information (Exp. 2), and when movement becomes unreliable or noisy there is no longer an improvement in precision of time perception (Exp. 3A & 3B). Although there is support for the proposed framework, more studies (i.e., fMRI, TMS, EEG, etc.) need to be conducted in order to better understand where and how this may be instantiated in the brain; however, this work provides a starting point to better understanding the intrinsic connection between time and movement
The Effects of Movement Parameters on Time Perception
Mobile organisms must be capable of deciding both where and when to move in order to keep up with a changing environment; therefore, a strong sense of time is necessary, otherwise, we would fail in many of our movement goals. Despite this intrinsic link between movement and timing, only recently has research begun to investigate the interaction. Two primary effects that have been observed include: movements biasing time estimates (i.e., affecting accuracy) as well as making time estimates more precise. The goal of this presentation is to review this literature, discuss a Bayesian cue combination framework to explain these effects, and discuss the experiments I have conducted to test the framework. The experiments herein include: a motor timing task comparing the effects of movement vs non-movement with and without feedback (Exp. 1A & 1B), a transcranial magnetic stimulation (TMS) study on the role of the supplementary motor area (SMA) in transforming temporal information (Exp. 2), and a perceptual timing task investigating the effect of noisy movement on time perception with both visual and auditory modalities (Exp. 3A & 3B). Together, the results of these studies support the Bayesian cue combination framework, in that: movement improves the precision of time perception not only in perceptual timing tasks but also motor timing tasks (Exp. 1A & 1B), stimulating the SMA appears to disrupt the transformation of temporal information (Exp. 2), and when movement becomes unreliable or noisy there is no longer an improvement in precision of time perception (Exp. 3A & 3B). Although there is support for the proposed framework, more studies (i.e., fMRI, TMS, EEG, etc.) need to be conducted in order to better understand where and how this may be instantiated in the brain; however, this work provides a starting point to better understanding the intrinsic connection between time and movement
Manipulating single-unit theta phase-locking with PhaSER: An open-source tool for real-time phase estimation and manipulation
Zoe has developed an open-source tool PhaSER, which allows her to perform real-time oscillatory phase estimation and apply optogenetic manipulations at precise phases of hippocampal theta during high-density electrophysiological recordings in head-fixed mice while they navigate a virtual environment. The precise timing of single-unit spiking relative to network-wide oscillations (i.e., phase locking) has long been thought to maintain excitatory-inhibitory homeostasis and coordinate cognitive processes, but due to intense experimental demands, the causal influence of this phenomenon has never been determined. Thus, we developed PhaSER (Phase-locked Stimulation to Endogenous Rhythms), a tool which allows the user to explore the temporal relationship between single-unit spiking and ongoing oscillatory activity.
Distinct contributions of different anterior frontal regions to rule-guided decision-making in primates: complementary evidence from lesions, electrophysiology, and neurostimulation
Different prefrontal areas contribute in distinctly different ways to rule-guided behaviour in the context of a Wisconsin Card Sorting Test (WCST) analog for macaques. For example, causal evidence from circumscribed lesions in NHPs reveals that dorsolateral prefrontal cortex (dlPFC) is necessary to maintain a reinforced abstract rule in working memory, orbitofrontal cortex (OFC) is needed to rapidly update representations of rule value, and the anterior cingulate cortex (ACC) plays a key role in cognitive control and integrating information for correct and incorrect trials over recent outcomes. Moreover, recent lesion studies of frontopolar cortex (FPC) suggest it contributes to representing the relative value of unchosen alternatives, including rules. Yet we do not understand how these functional specializations relate to intrinsic neuronal activities nor the extent to which these neuronal activities differ between different prefrontal regions. After reviewing the aforementioned causal evidence I will present our new data from studies using multi-area multi-electrode recording techniques in NHPs to simultaneously record from four different prefrontal regions implicated in rule-guided behaviour. Multi-electrode micro-arrays (‘Utah arrays’) were chronically implanted in dlPFC, vlPFC, OFC, and FPC of two macaques, allowing us to simultaneously record single and multiunit activity, and local field potential (LFP), from all regions while the monkey performs the WCST analog. Rule-related neuronal activity was widespread in all areas recorded but it differed in degree and in timing between different areas. I will also present preliminary results from decoding analyses applied to rule-related neuronal activities both from individual clusters and also from population measures. These results confirm and help quantify dynamic task-related activities that differ between prefrontal regions. We also found task-related modulation of LFPs within beta and gamma bands in FPC. By combining this correlational recording methods with trial-specific causal interventions (electrical microstimulation) to FPC we could significantly enhance and impair animals performance in distinct task epochs in functionally relevant ways, further consistent with an emerging picture of regional functional specialization within a distributed framework of interacting and interconnected cortical regions.
Behavioural Basis of Subjective Time Distortions
Precisely estimating event timing is essential for survival, yet temporal distortions are ubiquitous in our daily sensory experience. Here, we tested whether the relative position, duration, and distance in time of two sequentially-organized events—standard S, with constant duration, and comparison C, with duration varying trial-by-trial—are causal factors in generating temporal distortions. We found that temporal distortions emerge when the first event is shorter than the second event. Importantly, a significant interaction suggests that a longer inter-stimulus interval (ISI) helps to counteract such serial distortion effect only when the constant S is in the first position, but not if the unpredictable C is in the first position. These results imply the existence of a perceptual bias in perceiving ordered event durations, mechanistically contributing to distortion in time perception. Our results clarify the mechanisms generating time distortions by identifying a hitherto unknown duration-dependent encoding inefficiency in human serial temporal perception, something akin to a strong prior that can be overridden for highly predictable sensory events but unfolds for unpredictable ones.
Sampling the environment with body-brain rhythms
Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?
Motor contribution to auditory temporal predictions
Temporal predictions are fundamental instruments for facilitating sensory selection, allowing humans to exploit regularities in the world. Recent evidence indicates that the motor system instantiates predictive timing mechanisms, helping to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Accordingly, in the auditory domain auditory-motor interactions are observed during perception of speech and music, two temporally structured sensory streams. I will present a behavioral and neurophysiological account for this theory and will detail the parameters governing the emergence of this auditory-motor coupling, through a set of behavioral and magnetoencephalography (MEG) experiments.
A premotor amodal clock for rhythmic tapping
We recorded and analyzed the population activity of hundreds of neurons in the medial premotor areas (MPC) of rhesus monkeys performing an isochronous tapping task guided by brief flashing stimuli or auditory tones. The animals showed a strong bias towards visual metronomes, with rhythmic tapping that was more precise and accurate than for auditory metronomes. The population dynamics in state space as well as the corresponding neural sequences shared the following properties across modalities: the circular dynamics of the neural trajectories and the neural sequences formed a regenerating loop for every produced interval, producing a relative time representation; the trajectories converged in similar state space at tapping times while the moving bumps restart at this point, resetting the beat-based clock; the tempo of the synchronized tapping was encoded by a combination of amplitude modulation and temporal scaling in the neural trajectories. In addition, the modality induced a displacement in the neural trajectories in auditory and visual subspaces without greatly altering time keeping mechanism. These results suggest that the interaction between the amodal internal representation of pulse within MPC and a modality specific external input generates a neural rhythmic clock whose dynamics define the temporal execution of tapping using auditory and visual metronomes.
Pitch and Time Interact in Auditory Perception
Research into pitch perception and time perception has typically treated the two as independent processes. However, previous studies of music and speech perception have suggested that pitch and timing information may be processed in an integrated manner, such that the pitch of an auditory stimulus can influence a person’s perception, expectation, and memory of its duration and tempo. Typically, higher-pitched sounds are perceived as faster and longer in duration than lower-pitched sounds with identical timing. We conducted a series of experiments to better understand the limits of this pitch-time integrality. Across several experiments, we tested whether the higher-equals-faster illusion generalizes across the broader frequency range of human hearing by asking participants to compare the tempo of a repeating tone played in one of six octaves to a metronomic standard. When participants heard tones from all six octaves, we consistently found an inverted U-shaped effect of the tone’s pitch height, such that perceived tempo peaked between A4 (440 Hz) and A5 (880 Hz) and decreased at lower and higher octaves. However, we found that the decrease in perceived tempo at extremely high octaves could be abolished by exposing participants to high-pitched tones only, suggesting that pitch-induced timing biases are context sensitive. We additionally tested how the timing of an auditory stimulus influences the perception of its pitch, using a pitch discrimination task in which probe tones occurred early, late, or on the beat within a rhythmic context. Probe timing strongly biased participants to rate later tones as lower in pitch than earlier tones. Together, these results suggest that pitch and time exert a bidirectional influence on one another, providing evidence for integrated processing of pitch and timing information in auditory perception. Identifying the mechanisms behind this pitch-time interaction will be critical for integrating current models of pitch and tempo processing.
Learning predictive maps in the brain for spatial navigation
The predictive map hypothesis provides a promising framework to model representations in the hippocampal formation. I will introduce a tractable implementation of a predictive map called the successor representation (SR), before presenting data showing that rats and humans display SR-like navigational choices on a novel open-field maze. Next, I will show how such a predictive map could be implemented using spatial representations found in the hippocampal formation, before finally presenting how such learning might be well approximated by phenomena that exist in the spatial memory system - namely spike-timing dependent plasticity and theta phase precession.
Hierarchical transformation of visual event timing representations in the human brain: response dynamics in early visual cortex and timing-tuned responses in association cortices
Quantifying the timing (duration and frequency) of brief visual events is vital to human perception, multisensory integration and action planning. For example, this allows us to follow and interact with the precise timing of speech and sports. Here we investigate how visual event timing is represented and transformed across the brain’s hierarchy: from sensory processing areas, through multisensory integration areas, to frontal action planning areas. We hypothesized that the dynamics of neural responses to sensory events in sensory processing areas allows derivation of event timing representations. This would allow higher-level processes such as multisensory integration and action planning to use sensory timing information, without the need for specialized central pacemakers or processes. Using 7T fMRI and neural model-based analyses, we found responses that monotonically increase in amplitude with visual event duration and frequency, becoming increasingly clear from primary visual cortex to lateral occipital visual field maps. Beginning in area MT/V5, we found a gradual transition from monotonic to tuned responses, with response amplitudes peaking at different event timings in different recording sites. While monotonic response components were limited to the retinotopic location of the visual stimulus, timing-tuned response components were independent of the recording sites' preferred visual field positions. These tuned responses formed a network of topographically organized timing maps in superior parietal, postcentral and frontal areas. From anterior to posterior timing maps, multiple events were increasingly integrated, response selectivity narrowed, and responses focused increasingly on the middle of the presented timing range. These results suggest that responses to event timing are transformed from the human brain’s sensory areas to the association cortices, with the event’s temporal properties being increasingly abstracted from the response dynamics and locations of early sensory processing. The resulting abstracted representation of event timing is then propagated through areas implicated in multisensory integration and action planning.
Time as its own representation? Exploring a link between timing of cognition and time perception
The way we represent and perceive time has crucial implications for studying temporality in conscious experience. Contrasting positions posit that temporal information is separately abstracted out like any other perceptual property, or that time is represented through representations having temporal properties themselves. To add to this debate, we investigated alterations in felt time in conditions where only conscious visual experience is altered while a bistable figure remains physically unchanged. In this talk, I will discuss two studies that we have done in relation to answering this question. In study 1, we investigated whether perceptual switches in fixed intervals altered felt time. In three experiments we showed that a break in visual experience (via a perceptual switch) also leads to a break in felt time. In study 2, we are currently looking at figure-ground perception in ambigous displays. Here, in experiment 1 we show that differences in flicker frequencies on ambigous regions can induce figure-ground segregation. To see if a reverse complementarity exists for felt time, we ask participants to view ambigous regions as figure/ground and show that they have different temporal resolutions for the same region based on whether it is seen as figure or background. Overall, the two studies provide evidence for temporal mirroring and isomorphism in visual experience, arguing for a link between the timing of experience and time perception.
Mismatching clocks: the effect of circadian misalignment on peripheral 24-h rhythms in humans
Night shift work is associated with adverse health effects and leads to misalignment between timing cues from the environment and the endogenous circadian clock. In this presentation, I will discuss the effect of circadian misalignment induced by night shift work on peripheral 24-h rhythms on the transcriptome and metabolome in humans, presenting findings from both controlled laboratory studies and field studies. Furthermore, I will highlight the importance of taking into account interindividual differences in the response to circadian misalignment.
MicroRNAs as targets in the epilepsies: hits, misses and complexes
MicroRNAs are small noncoding RNAs that provide a critical layer of gene expression control. Individual microRNAs variably exert effects across networks of genes via sequence-specific binding to mRNAs, fine-tuning protein levels. This helps coordinate the timing and specification of cell fate transitions during brain development and maintains neural circuit function and plasticity by activity-dependent (re)shaping of synapses and the levels of neurotransmitter components. MicroRNA levels have been found to be altered in tissue from the epileptogenic zone resected from adults with drug-resistant focal epilepsy and this has driven efforts to explore their therapeutic potential, in particular using antisense oligonucleotide (ASOs) inhibitors termed antimirs. Here, we review the molecular mechanisms by which microRNAs control brain excitability and the latest progress towards a microRNA-based treatment for temporal lobe epilepsy. We also look at whether microRNA-based approaches could be used to treat genetic epilepsies, correcting individual genes or dysregulated pathways. Finally, we look at how cells have evolved to maximise the efficiency of the microRNA system via RNA editing, where single base changes is capable of altering the repertoire of genes under the control of a single microRNA. The findings improve our understanding of the molecular landscape of the epileptic brain and may lead to new therapies.
Optimization at the Single Neuron Level: Prediction of Spike Sequences and Emergence of Synaptic Plasticity Mechanisms
Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We propose a plasticity rule based on pre-dictive processing, where the neuron learns a low-rank model of the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that maximally predict other synaptic inputs based on their temporal relations, which provide a solution to an optimization problem that can be implemented at the single-neuron level using only local information. Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs in a sequence. We show that this mechanism can explain the development of anticipatory motion signaling and recall in the visual system. Furthermore, we demonstrate that the learning rule gives rise to several experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.
Parametric control of flexible timing through low-dimensional neural manifolds
Biological brains possess an exceptional ability to infer relevant behavioral responses to a wide range of stimuli from only a few examples. This capacity to generalize beyond the training set has been proven particularly challenging to realize in artificial systems. How neural processes enable this capacity to extrapolate to novel stimuli is a fundamental open question. A prominent but underexplored hypothesis suggests that generalization is facilitated by a low-dimensional organization of collective neural activity, yet evidence for the underlying neural mechanisms remains wanting. Combining network modeling, theory and neural data analysis, we tested this hypothesis in the framework of flexible timing tasks, which rely on the interplay between inputs and recurrent dynamics. We first trained recurrent neural networks on a set of timing tasks while minimizing the dimensionality of neural activity by imposing low-rank constraints on the connectivity, and compared the performance and generalization capabilities with networks trained without any constraint. We then examined the trained networks, characterized the dynamical mechanisms underlying the computations, and verified their predictions in neural recordings. Our key finding is that low-dimensional dynamics strongly increases the ability to extrapolate to inputs outside of the range used in training. Critically, this capacity to generalize relies on controlling the low-dimensional dynamics by a parametric contextual input. We found that this parametric control of extrapolation was based on a mechanism where tonic inputs modulate the dynamics along non-linear manifolds in activity space while preserving their geometry. Comparisons with neural recordings in the dorsomedial frontal cortex of macaque monkeys performing flexible timing tasks confirmed the geometric and dynamical signatures of this mechanism. Altogether, our results tie together a number of previous experimental findings and suggest that the low-dimensional organization of neural dynamics plays a central role in generalizable behaviors.
Dynamic dopaminergic signaling probabilistically controls the timing of self-timed movements
Human movement disorders and pharmacological studies have long suggested molecular dopamine modulates the pace of the internal clock. But how does the endogenous dopaminergic system influence the timing of our movements? We examined the relationship between dopaminergic signaling and the timing of reward-related, self-timed movements in mice. Animals were trained to initiate licking after a self-timed interval following a start cue; reward was delivered if the animal’s first lick fell within a rewarded window (3.3-7 s). The first-lick timing distributions exhibited the scalar property, and we leveraged the considerable variability in these distributions to determine how the activity of the dopaminergic system related to the animals’ timing. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time, even on single trials. Steeply rising signals preceded early initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movement. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of the timing distribution, whereas inhibition caused late-shifting, as if dopaminergic manipulation modulated the moment-to-moment probability of unleashing the planned movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation. We conclude that ramping dopaminergic signals, potentially encoding dynamic reward expectation, probabilistically modulate the moment-by-moment decision of when to move. (Based on work from Hamilos et al., eLife, 2021).
Directing the timing of maturation in human pluripotent stem cell-derived neurons
Neural signature for accumulated evidence underlying temporal decisions
Cognitive models of timing often include a pacemaker analogue whose ticks are accumulated to form an internal representation of time, and a threshold that determines when a target duration has elapsed. However, clear EEG manifestations of these abstract components have not yet been identified. We measured the EEG of subjects while they performed a temporal bisection task in which they were requested to categorize visual stimuli as short or long in duration. We report an ERP component whose amplitude depends monotonically on the stimulus duration. The relation of the ERP amplitude and stimulus duration can be captured by a simple model, adapted from a known drift-diffusion model for time perception. It includes a noisy accumulator that starts with the stimulus onset and a threshold. If the threshold is reached during stimulus presentation, the stimulus is categorized as "long", otherwise the stimulus is categorized as "short". At the stimulus offset, a response proportional to the distance to the threshold is emitted. This simple model has two parameters that fit both the behavior and ERP amplitudes recorded in the task. Two subsequent experiments replicate and extend this finding to another modality (touch) as well as to different time ranges (subsecond and suprasecond), establishing the described ERP component as a useful handle on the cognitive processes involved in temporal decisions.
How does seeing help listening? Audiovisual integration in Auditory Cortex
Multisensory responses are ubiquitous in so-called unisensory cortex. However, despite their prevalence, we have very little understanding of what – if anything - they contribute to perception. In this talk I will focus on audio-visual integration in auditory cortex. Anatomical tracing studies highlight visual cortex as one source of visual input to auditory cortex. Using cortical cooling we test the hypothesis that these inputs support audiovisual integration in ferret auditory cortex. Behavioural studies in humans support the idea that visual stimuli can help listeners to parse an auditory scene. This effect is paralleled in single units in auditory cortex, where responses to a sound mixture can be determined by the timing of a visual stimulus such that sounds that are temporally coherent with a visual stimulus are preferentially represented. Our recent data therefore support the idea that one role for the early integration of auditory and visual signals in auditory cortex is to support auditory scene analysis, and that visual cortex plays a key role in this process.
Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models
To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.
NMC4 Short Talk: Systematic exploration of neuron type differences in standard plasticity protocols employing a novel pathway based plasticity rule
Spike Timing Dependent Plasticity (STDP) is argued to modulate synaptic strength depending on the timing of pre- and postsynaptic spikes. Physiological experiments identified a variety of temporal kernels: Hebbian, anti-Hebbian and symmetrical LTP/LTD. In this work we present a novel plasticity model, the Voltage-Dependent Pathway Model (VDP), which is able to replicate those distinct kernel types and intermediate versions with varying LTP/LTD ratios and symmetry features. In addition, unlike previous models it retains these characteristics for different neuron models, which allows for comparison of plasticity in different neuron types. The plastic updates depend on the relative strength and activation of separately modeled LTP and LTD pathways, which are modulated by glutamate release and postsynaptic voltage. We used the 15 neuron type parametrizations in the GLIF5 model presented by Teeter et al. (2018) in combination with the VDP to simulate a range of standard plasticity protocols including standard STDP experiments, frequency dependency experiments and low frequency stimulation protocols. Slight variation in kernel stability and frequency effects can be identified between the neuron types, suggesting that the neuron type may have an effect on the effective learning rule. This plasticity model builds a middle ground between biophysical and phenomenological models allowing not just for the combination with more complex and biophysical neuron models, but is also computationally efficient so can be used in network simulations. Therefore it offers the possibility to explore the functional role of the different kernel types and electrophysiological differences in heterogeneous networks in future work.
Timing errors and decision making
Error monitoring refers to the ability to monitor one's own task performance without explicit feedback. This ability is studied typically in two-alternative forced-choice (2AFC) paradigms. Recent research showed that humans can also keep track of the magnitude and direction of errors in different magnitude domains (e.g., numerosity, duration, length). Based on the evidence that suggests a shared mechanism for magnitude representations, we aimed to investigate whether metric error monitoring ability is commonly governed across different magnitude domains. Participants reproduced/estimated temporal, numerical, and spatial magnitudes after which they rated their confidence regarding first order task performance and judged the direction of their reproduction/estimation errors. Participants were also tested in a 2AFC perceptual decision task and provided confidence ratings regarding their decisions. Results showed that variability in reproductions/estimations and metric error monitoring ability, as measured by combining confidence and error direction judgements, were positively related across temporal, spatial, and numerical domains. Metacognitive sensitivity in these metric domains was also positively associated with each other but not with metacognitive sensitivity in the 2AFC perceptual decision task. In conclusion, the current findings point at a general metric error monitoring ability that is shared across different metric domains with limited generalizability to perceptual decision-making.
Untitled Seminar
Leanne Godinho (Germany): Probing the mechanisms underlying cell fate in vivo in the developing retina; Gabriele Ciceri (USA): Directing the timing of maturation in human pluripotent stem cell-derived cortical neurons; Daniel Poppe (Australia): Conserved and divergent features of DNA methylation in embryonic stem cell-derived neurons
The generation of cortical novelty responses through inhibitory plasticity
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
Untitled Seminar
Laura Fenlon (Australia): Time shapes all brains: timing of a conserved transcriptional network underlies divergent cortical connectivity routes in mammalian brain development and evolution; Laurent Nguyen (Belgium): Regulation of cerebral cortex morphogenesis by migrating cells; Carol Ann Mason (USA): Wiring the eye to brain for binocular vision: lessons from the albino visual system. Thomas Perlmann (Sweden): Interrogating dopamine neuron development at the single cell level
Will it keep me awake? Common caffeine intake habits and sleep in real life situations
Daily caffeine consumption and chronic sleep restriction are highly prevalent in society. It is well established that acute caffeine intake under controlled conditions enhances vigilance and promotes wakefulness but can also delay sleep initiation and reduce electroencephalographic (EEG) markers of sleep intensity, particularly in susceptible individuals. To investigate whether these effects are also present during chronic consumption of coffee/caffeine, we recently conducted several complementary studies. We examined whether repeated coffee intake in dose and timing mimicking ‘real world’ habits maintains simple and complex attentional processes during chronic sleep restriction, such as during a busy work week. We found in genetically caffeine-sensitive individuals that regular coffee (300 mg caffeine/day) benefits most attentional tasks for 3-4 days when compared to decaffeinated coffee. Genetic variants were also used in the population-based HypnoLaus cohort, to investigate whether habitual caffeine consumption causally affects time to fall asleep, number of awakenings during sleep, and EEG-derived sleep intensity. The multi-level statistical analyses consistently showed that sleep quality was virtually unaffected when >3 caffeine-containing beverages/day were compared to 0-3 beverages/day. This conclusion was further corroborated by quantifying the sleep EEG in the laboratory in habitual caffeine consumers. Compared to placebo, daily intake of 3 x 150 mg caffeine over 10 days did not strongly impair nocturnal sleep nor subjective sleep quality in good sleepers. Finally, we tested whether an engineered delayed, pulsatile-release caffeine formula can improve the quality of morning awakening in sleep-restricted volunteers. We found that 160 mg caffeine taken at bedtime ameliorated the quality of awakening, increased positive and reduced negative affect scores, and promoted sustained attention immediately upon scheduled wake-up. Such an approach could prevent over-night caffeine withdrawal and provide a proactive strategy to attenuate disabling sleep inertia. Taken together, the studies suggest that common coffee/caffeine intake habits can transiently attenuate detrimental consequences of reduced sleep virtually without disturbing subjective and objective markers of sleep quality. Nevertheless, coffee/caffeine consumption cannot compensate for chronic sleep restriction.
Brain-body interactions in the metabolic/nutritional control of puberty: Neuropeptide pathways and central energy sensors
Puberty is a brain-driven phenomenon, which is under the control of sophisticated regulatory networks that integrate a large number of endogenous and environmental signals, including metabolic and nutritional cues. Puberty onset is tightly bound to the state of body energy reserves, and deregulation of energy/metabolic homeostasis is often associated with alterations in the timing of puberty. However, despite recent progress in the field, our knowledge of the specific molecular mechanisms and pathways whereby our brain decode metabolic information to modulate puberty onset remains fragmentary and incomplete. Compelling evidence, gathered over the last fifteen years, supports an essential role of hypothalamic neurons producing kisspeptins, encoded by Kiss1, in the neuroendocrine control of puberty. Kiss1 neurons are major components of the hypothalamic GnRH pulse generator, whose full activation is mandatory pubertal onset. Kiss1 neurons seemingly participate in transmitting the regulatory actions of metabolic cues on pubertal maturation. However, the modulatory influence of metabolic signals (e.g., leptin) on Kiss1 neurons might be predominantly indirect and likely involves also the interaction with other transmitters and neuronal populations. In my presentation, I will review herein recent work of our group, using preclinical models, addressing the molecular mechanisms whereby Kiss1 neurons are modulated by metabolic signals, and thereby contribute to the nutritional control of puberty. In this context, the putative roles of the energy/metabolic sensors, AMP-activated protein kinase (AMPK) and SIRT1, in the metabolic control of Kiss1 neurons and puberty will be discussed. In addition, I will summarize recent findings from our team pointing out a role of central de novo ceramide signaling in mediating the impact of obesity of (earlier) puberty onset, via non-canonical, kisspeptin-related pathways. These findings are posed of translational interest, as perturbations of these molecular pathways could contribute to the alterations of pubertal timing linked to conditions of metabolic stress in humans, ranging from malnutrition to obesity, and might become druggable targets for better management of pubertal disorders.
Towards targeted therapies for the treatment of Dravet Syndrome
Dravet syndrome is a severe epileptic encephalopathy that begins during the first year of life and leads to severe cognitive and social interaction deficits. It is mostly caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes for the alpha-subunit of the voltage-gated sodium channel (Nav1.1) and is responsible mainly of GABAergic interneuron excitability. While different therapies based on the upregulation of the healthy allele of the gene are being developed, the dynamics of reversibility of the pathology are still unclear. In fact, whether and to which extent the pathology is reversible after symptom onset and if it is sufficient to ensure physiological levels of Scn1a during a specific critical period of time are open questions in the field and their answers are required for proper development of effective therapies. We generated a novel Scn1a conditional knock-in mouse model (Scn1aSTOP) in which the endogenous Scn1a gene is silenced by the insertion of a floxed STOP cassette in an intron of Scn1a gene; upon Cre recombinase expression, the STOP cassette is removed, and the mutant allele can be reconstituted as a functional Scn1a allele. In this model we can reactivate the expression of Scn1a exactly in the neuronal subtypes in which it is expressed and at its physiological level. Those aspects are crucial to obtain a final answer on the reversibility of DS after symptom onset. We exploited this model to demonstrate that global brain re-expression of the Scn1a gene when symptoms are already developed (P30) led to a complete rescue of both spontaneous and thermic inducible seizures and amelioration of behavioral abnormalities characteristic of this model. We also highlighted dramatic gene expression alterations associated with astrogliosis and inflammation that, accordingly, were rescued by Scn1a gene expression normalization at P30. Moreover, employing a conditional knock-out mouse model of DS we reported that ensuring physiological levels of Scn1a during the critical period of symptom appearance (until P30) is not sufficient to prevent the DS, conversely, mice start to die of SUDEP and develop spontaneous seizures. These results offer promising insights in the reversibility of DS and can help to accelerate therapeutic translation, providing important information on the timing for gene therapy delivery to Dravet patients.
Error correction and reliability timescale in converging cortical networks
Rapidly changing inputs such as visual scenes and auditory landscapes are transmitted over several synaptic interfaces and perceived with little loss of detail, but individual neurons are typically “noisy” and cortico-cortical connections are typically “weak”. To understand how information embodied in spike train is transmitted in a lossless manner, we focus on a single synaptic interface: between pyramidal cells and putative interneurons. Using arbitrary white noise patterns injected intra-cortically as photocurrents to freely-moving mice, we find that directly-activated cells exhibit precision of several milliseconds, but post-synaptic, indirectly-activated cells exhibit higher precision. Considering multiple identical messages, the reliability of directly-activated cells peaks at a timescale of dozens of milliseconds, whereas indirectly-activated cells exhibit an order-of-magnitude faster timescale. Using data-driven modelling, we find that error correction is consistent with non-linear amplification of coincident spikes.
Neural dynamics underlying temporal inference
Animals possess the ability to effortlessly and precisely time their actions even though information received from the world is often ambiguous and is inadvertently transformed as it passes through the nervous system. With such uncertainty pervading through our nervous systems, we could expect that much of human and animal behavior relies on inference that incorporates an important additional source of information, prior knowledge of the environment. These concepts have long been studied under the framework of Bayesian inference with substantial corroboration over the last decade that human time perception is consistent with such models. We, however, know little about the neural mechanisms that enable Bayesian signatures to emerge in temporal perception. I will present our work on three facets of this problem, how Bayesian estimates are encoded in neural populations, how these estimates are used to generate time intervals, and how prior knowledge for these tasks is acquired and optimized by neural circuits. We trained monkeys to perform an interval reproduction task and found their behavior to be consistent with Bayesian inference. Using insights from electrophysiology and in silico models, we propose a mechanism by which cortical populations encode Bayesian estimates and utilize them to generate time intervals. Thereafter, I will present a circuit model for how temporal priors can be acquired by cerebellar machinery leading to estimates consistent with Bayesian theory. Based on electrophysiology and anatomy experiments in rodents, I will provide some support for this model. Overall, these findings attempt to bridge insights from normative frameworks of Bayesian inference with potential neural implementations for the acquisition, estimation, and production of timing behaviors.
Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples
Neocortical-hippocampal interactions during off-line periods such as slow-wave sleep are implicated in memory processing. In particular, recent memory traces are replayed in hippocampus during some sharp-wave ripple (SWR) events, and these replay events are positively correlated with neocortical memory trace reactivation. A prevalent model is that SWR arise ‘spontaneously’ in CA3 and propagate recent memory ‘indices’ outward to the neocortex to enable memory consolidation there; however, the spatiotemporal distribution of neocortical activation relative to SWR is incompletely understood. We used wide-field optical imaging to study voltage and glutamate release transients in dorsal neocortex in relation to CA1 multiunit activity (MUA) and SWR of sleeping and urethane anesthetized mice. Modulation of voltage and glutamate release signals in relation to SWRs varied across superficial neocortical regions, and it was largest in posteromedial regions surrounding retrosplenial cortex (RSC), which receives strong hippocampal output connections. Activity tended to spread sequentially from more medial towards more lateral regions. Contrary to the unidirectional hypothesis, activation exhibited a continuum of timing relative to SWRs, varying from neocortex leading to neocortex lagging the SWRs (± ~250 msec). The timing continuum was correlated with the skewness of peri-SWR hippocampal MUA and with a tendency for some SWR to occur in clusters. Thus, contrary to the model in which SWRs arise spontaneously in hippocampus, neocortical activation often precedes SWRs and may thus constitute a trigger event in which neocortical information seeds associative reactivation of hippocampal ‘indices’.
The structure of behavior entrained to long intervals
Interpretation of interval timing data generated from animal models is complicated by ostensible motivational effects which arise from the delay-to-reward imposed by interval timing tasks, as well as overlap between timed and non-timed responses. These factors become increasingly prevalent at longer intervals. To address these concerns, two adjustments to long interval timing tasks are proposed. First, subjects should be afforded with reinforced non-timing behaviors concurrent with timing. Second, subjects should initiate the onset of timed stimuli. Under these conditions, interference by extraneous behavior would be detected in the rate of concurrent non- timing behaviors, and changes in motivation would be detected in the rate at which timed stimuli are initiated. In a task with these characteristics, rats initiated a concurrent fixed-interval (FI) random-ratio (RR) schedule of reinforcement. This design facilitated response-initiated timing behavior, even at increasingly long delays. Pre-feeding manipulations revealed an effect on the number of initiated trials, but not on the timing peak function.
Organization and control of hippocampal circuits in epilepsy
Basket cells are key GABAergic inhibitory interneurons that target the somata and proximal dendrites, enabling efficient control of the timing and rate of spiking of their postsynaptic targets. In all cortical circuits, there are two major types of basket cell that exhibit striking developmental, molecular, anatomical, and physiological differences. In this talk, I will discuss recent results that reveal the tightly coupled complementarity of these two key microcircuit regulatory modules, demonstrating a novel form of brain-state-specific segregation of inhibition during spontaneous behavior, with implications for the assessment of dysregulated inhibition in epilepsy. In addition, I will describe recent advances in our understanding of the spatio-temporal dynamics of endocannabinoid signaling in hippocampal circuits and discuss how abnormal amplification of these activity-dependent signaling processes leads to surprising downstream effects in seizures.
The Dark Side of Vision: Resolving the Neural Code
All sensory information – like what we see, hear and smell – gets encoded in spike trains by sensory neurons and gets sent to the brain. Due to the complexity of neural circuits and the difficulty of quantifying complex animal behavior, it has been exceedingly hard to resolve how the brain decodes these spike trains to drive behavior. We now measure quantal signals originating from sparse photons through the most sensitive neural circuits of the mammalian retina and correlate the retinal output spike trains with precisely quantified behavioral decisions. We utilize a combination of electrophysiological measurements on the most sensitive ON and OFF retinal ganglion cell types and a novel deep-learning based tracking technology of the head and body positions of freely-moving mice. We show that visually-guided behavior relies on information from the retinal ON pathway for the dimmest light increments and on information from the retinal OFF pathway for the dimmest light decrements (“quantal shadows”). Our results show that the distribution of labor between ON and OFF pathways starts already at starlight supporting distinct pathway-specific visual computations to drive visually-guided behavior. These results have several fundamental consequences for understanding how the brain integrates information across parallel information streams as well as for understanding the limits of sensory signal processing. In my talk, I will discuss some of the most eminent consequences including the extension of this “Quantum Behavior” paradigm from mouse vision to monkey and human visual systems.
Variability, maintenance and learning in birdsong
The songbird zebra finch is an exemplary model system in which to study trial-and-error learning, as the bird learns its single song gradually through the production of many noisy renditions. It is also a good system in which to study the maintenance of motor skills, as the adult bird actively maintains its song and retains some residual plasticity. Motor learning occurs through the association of timing within the song, represented by sparse firing in nucleus HVC, with motor output, driven by nucleus RA. Here we show through modeling that the small level of observed variability in HVC can result in a network which is more easily able to adapt to change, and is most robust to cell damage or death, than an unperturbed network. In collaboration with Carlos Lois’ lab, we also consider the effect of directly perturbing HVC through viral injection of toxins that affect the firing of projection neurons. Following these perturbations, the song is profoundly affected but is able to almost perfectly recover. We characterize the changes in song acoustics and syntax, and propose models for HVC architecture and plasticity that can account for some of the observed effects. Finally, we suggest a potential role for inputs from nucleus Uva in helping to control timing precision in HVC.
A distinct subcircuit in medial entorhinal cortex mediates learning of interval timing behavior during immobility
Over 60 years of research has established that medial temporal lobe structures, including the hippocampus and entorhinal cortex, are necessary for the formation of episodic memories (i.e. memories of specific personal events that occur in spatial and temporal context). While prior work to establish the neural mechanisms underlying episodic memory has largely focused on questions related spatial context, recently we have begun to investigate how these brain structures could be involved in encoding aspects of temporal context. In particular, we have focused on how medial entorhinal cortex, a structure well known for its role in spatial memory, may also be involved in encoding interval time. To answer this question we have developed an instrumental paradigm for head-fixed mice that requires both immobile interval timing and locomotion-dependent navigation behavior. By combining this behavioral paradigm with large-scale cellular resolution functional imaging and optogenetic-mediated inactivation, our results suggest that MEC is required for learning of interval timing behavior and that interval timing could be mediated through regular, sequential neural activity of a distinct subpopulation of neurons in MEC that encode elapsed time during periods of immobility (Heys and Dombeck, 2018; Heys et al, 2020; Issa et al., 2020). In this talk, I will discuss these findings and discuss our on-going work to investigate the principles underlying the role of medial temporal lobe structures in timing behavior and episodic memory.
Two opposing forces in inhibitory spike-timing-dependent plasticity differentially regulate network connectivity
Bernstein Conference 2024
Modulation of Spike-timing-dependent Plasticity via the Interaction of Astrocyte-regulated D-serine with NMDA Receptors
Bernstein Conference 2024
Timing and transmission: the role of axonal action potential propagation speed in the synchronization of foveal vision
Bernstein Conference 2024
Entorhinal grid-like signals reflect temporal context for human timing behavior
COSYNE 2023
Maintenance of the timing information in olfactory working memory by global activity waves
COSYNE 2023
Mechanisms underlying flexible, context-dependent timing in medial entorhinal cortex
COSYNE 2023
Network dynamics implement optimal inference in a flexible timing task
COSYNE 2023
Predicting sensory modulation of precise spike timing for motor control
COSYNE 2023
Timing-dependent modulation of working memory by dopaminergic release in the prefrontal cortex
COSYNE 2023
Constrained Multi-Regional Recurrent Neural Networks Elucidate Distributed Motor Timing Dynamics
COSYNE 2025
Integrator dynamics in the cortico-basal ganglia loop underlie flexible motor timing
COSYNE 2025
Adenosine and astrocytes determine the developmental dynamics of spike timing-dependent plasticity in the somatosensory cortex
FENS Forum 2024
Brain-distributed neural representation of timing behaviour
FENS Forum 2024
Circadian timing of limbic seizures in the epileptic mouse
FENS Forum 2024
Coordinated interneuron preparatory activity facilitates optimal motor timing
FENS Forum 2024
Exploring the interplay of glucocorticoids, daily timing, sleep, and psychology-based task performance
FENS Forum 2024
Two forms of presynaptic spike timing-dependent depression at entorhinal cortex-hippocampal synapses are mediated by astrocyte activity
FENS Forum 2024
Identifying central timing mechanisms in the human cerebellum across explicit and implicit timing: A combined neuropsychology-electroencephalography approach
FENS Forum 2024
The influence of depression onset timing after gastrointestinal disease on dementia risk
FENS Forum 2024
The order and timing of II/III layer activation determine the magnitude and direction of the plastic changes in layer V of the primary motor cortex
FENS Forum 2024
The role of neocortical and hippocampal presynaptic NMDA receptors in the induction of spike timing-dependent long-term depression
FENS Forum 2024
The role of theta-gamma coupling in the relationship between motor timing and cognitive function
FENS Forum 2024
Sensitivity to envelope and pulse timing interaural time differences in prosthetic hearing
FENS Forum 2024
Timing-dependent LTP at Schaffer collateral-CA1 synapses exhibits a dorso-ventral gradient of GABAergic modulation in the mouse hippocampus
FENS Forum 2024
timing coverage
74 items