TLR4
Latest
Converging mechanisms of epileptogenesis after brain injury
Traumatic brain injury (TBI), a leading cause of acquired epilepsy, results in primary cellular injury as well as secondary neurophysiological and inflammatory responses which contribute to epileptogenesis. I will present our recent studies identifying a role for neuro-immune interactions, specifically, the innate immune receptor Toll-like receptor 4 (TLR4), in enhancing network excitability and cell loss in hippocampal dentate gyrus early after concussive brain injury. I will describe results indicating that the transient post-traumatic increases in dentate neurogenesis which occurs during the same early post-injury period augments dentate network excitability and epileptogenesis. I will provide evidence for the beneficial effects of targeting TLR4 and neurogenesis early after brain injury in limiting epileptogenesis. We will discuss potential mechanisms for convergence of the post-traumatic neuro-immune and neurogenic changes and the implications for therapies to reduce neurological deficits and epilepsy after brain injury.
Role of TLR4 pathway in the prefrontal cortex following acute and chronic administration of morphine and its withdrawal syndrome
FENS Forum 2024
Toll-Like Receptor 4 (TLR4), a target for cytoprotection and (re)myelination in multiple sclerosis
FENS Forum 2024
TLR4 coverage
3 items