Latest

SeminarNeuroscience

LRRK2 – a master regulator of neurodegeneration: acting on multiple systems including neuroinflammatory signaling, vesicular trafficking, and cell death pathways

Hardy Rideout
Biomedical Research Foundation, Academy of Athens
Feb 21, 2025
SeminarNeuroscience

Numbing intraneuronal Tau levels to prevent neurodegeneration in tauopathies

Michel Cayouette
Montreal Clinical Research Institute (IRCM)
May 31, 2021

Intraneuronal accumulation of the microtubule associated protein Tau is largely recognized as an important toxic factor linked to neuronal cell death in Alzheimer’s disease and tauopathies. While there has been progress uncovering mechanisms leading to the formation of toxic Tau tangles, less is known about how intraneuronal Tau levels are regulated in health and disease. Here, I will discuss our recent work showing that the intracellular trafficking adaptor protein Numb is critical to control intraneuronal Tau levels. Inactivation of Numb in retinal ganglion cells increases monomeric and oligomeric Tau levels and leads to axonal blebbing in optic nerves, followed by significant neuronal cell loss in old mice. Interestingly, overexpression of the long isoform of Numb (Numb-72) decreases intracellular Tau levels by promoting exocytosis of monomeric Tau. In TauP301S and triple transgenic AD mouse models, expression of Numb-72 in RGCs reduces the number of axonal blebs and prevents neurodegeneration. Finally, inactivation of Numb in TauP301S mice accelerates neurodegeneration in both the retina and spinal cord and leads to precocious paralysis. Taken together, these results uncover Numb as a essential regulator of Tau homeostasis in neurons and as a potential therapeutic agent for AD and tauopathies.

SeminarNeuroscience

Translational upregulation of STXBP1 by non-coding RNAs as an innovative treatment for STXBP1 encephalopathy

Federico Zara & Ganna Balagura
Institute G. Gaslini, University of Genoa
Mar 17, 2021

Developmental and epileptic encephalopathies (DEEs) are a broad spectrum of genetic epilepsies associated with impaired neurological development as a direct consequence of a genetic mutation, in addition to the effect of the frequent epileptic activity on brain. Compelling genetic studies indicate that heterozygous de novo mutations represent the most common underlying genetic mechanism, in accordance with the sporadic presentation of DEE. De novo mutations may exert a loss-of-function (LOF) on the protein by decrementing expression level and/or activity, leading to functional haploinsufficiency. These diseases share several features: severe and frequent refractory seizures, diffusely abnormal background activity on EEG, intellectual disability often profound, and severe consequences on global development. One of major causes of early onset DEE are de novo heterozygous mutations in syntaxin-binding-protein-1 gene STXBP1, which encodes a membrane trafficking protein playing critical role in vesicular docking and fusion. LOF STXBP1 mutations lead to a failure of neurotransmitter secretion from synaptic vesicles. Core clinical features of STXBP1 encephalopathy include early-onset epilepsy with hypsarrhythmic EEG, or burst-suppression pattern, or multifocal epileptiform activity. Seizures are often resistant to standard treatments and patients typically show intellectual disability, mostly severe to profound. Additional neurologic features may include autistic traits, movement disorders (dyskinesia, dystonia, tremor), axial hypotonia, and ataxia, indicating a broader neurologic impairment. Patients with severe neuro-cognitive features but without epilepsy have been reported. Recently, a new class of natural and synthetic non-coding RNAs have been identified, enabling upregulation of protein translation in a gene-specific way (SINEUPs), without any increase in mRNA of the target gene. SINEUPs are translational activators composed by a Binding Domain (BD) that overlaps, in antisense orientation, to the sense protein-coding mRNA, and determines target selection; and an Effector Domain (ED), that is essential for protein synthesis up regulation. SINEUPs have been shown to restore the physiological expression of a protein in case of haploinsufficiency, without driving excessive overexpression out of the physiological range. This technology brings many advantages, as it mainly acts on endogenous target mRNAs produced in situ by the wild-type allele; this action is limited to mRNA under physiological regulation, therefore no off-site effects can be expected in cells and tissues that do not express the target transcript; by acting only on a posttranscriptional level, SINEUPs do not trigger hereditable genome editing. After bioinformatic analysis of the promoter region of interest, we designed SINEUPs with 3 different BD for STXBP1. Human neurons from iPSCs were treated and STXBP1 levels showed a 1.5-fold increase compared to the Negative control. RNA levels of STXBP1 after the administration of SINEUPs remained stable as expected. These preliminary results proved the SINEUPs potential to specifically increase the protein levels without impacting on the genome. This is an extremely flexible approach to target many developmental and epileptic encephalopathies caused by haploinsufficiency, and therefore to address these diseases in a more tailored and radical way.

SeminarNeuroscience

Neuronal morphology imposes a tradeoff between stability, accuracy and efficiency of synaptic scaling

Adriano Bellotti
University of Cambridge
Jul 20, 2020

Synaptic scaling is a homeostatic normalization mechanism that preserves relative synaptic strengths by adjusting them with a common factor. This multiplicative change is believed to be critical, since synaptic strengths are involved in learning and memory retention. Further, this homeostatic process is thought to be crucial for neuronal stability, playing a stabilizing role in otherwise runaway Hebbian plasticity [1-3]. Synaptic scaling requires a mechanism to sense total neuron activity and globally adjust synapses to achieve some activity set-point [4]. This process is relatively slow, which places limits on its ability to stabilize network activity [5]. Here we show that this slow response is inevitable in realistic neuronal morphologies. Furthermore, we reveal that global scaling can in fact be a source of instability unless responsiveness or scaling accuracy are sacrificed." "A neuron with tens of thousands of synapses must regulate its own excitability to compensate for changes in input. The time requirement for global feedback can introduce critical phase lags in a neuron’s response to perturbation. The severity of phase lag increases with neuron size. Further, a more expansive morphology worsens cell responsiveness and scaling accuracy, especially in distal regions of the neuron. Local pools of reserve receptors improve efficiency, potentiation, and scaling, but this comes at a cost. Trafficking large quantities of receptors requires time, exacerbating the phase lag and instability. Local homeostatic feedback mitigates instability, but this too comes at the cost of reducing scaling accuracy." "Realization of the phase lag instability requires a unified model of synaptic scaling, regulation, and transport. We present such a model with global and local feedback in realistic neuron morphologies (Fig. 1). This combined model shows that neurons face a tradeoff between stability, accuracy, and efficiency. Global feedback is required for synaptic scaling but favors either system stability or efficiency. Large receptor pools improve scaling accuracy in large morphologies but worsen both stability and efficiency. Local feedback improves the stability-efficiency tradeoff at the cost of scaling accuracy. This project introduces unexplored constraints on neuron size, morphology, and synaptic scaling that are weakened by an interplay between global and local feedback.

ePosterNeuroscience

Disentangling protein synthesis, trafficking, and degradation across the mouse brain

Cornelius Bergmann, Boaz Mohar, Morgan Clarke, Tatjana Tchumatchenko

FENS Forum 2024

ePosterNeuroscience

Elucidating a novel role of Parkinson’s disease-associated protein Parkin (PARK2) in synaptic membrane trafficking

Sidra Mohamed Yaqoob, Mian Cao

FENS Forum 2024

ePosterNeuroscience

Glycosylation of synaptic vesicle glycoprotein 2C (SV2C) in cellular trafficking: Impact on Parkinson's disease

Png Wen Yang, Cao Mian

FENS Forum 2024

ePosterNeuroscience

Investigating synaptic dysfunction caused by AMPA receptor trafficking to lysosomes in familial Alzheimer’s disease iPSC-derived neurons

Anne Dewitz, Jonathan Hanley

FENS Forum 2024

ePosterNeuroscience

The role of disulfide bonds in GluN1 in the regulation of the early trafficking and functional properties of GluN1/GluN2 subtypes of NMDA receptors

Jakub Netolicky, Petra Zahumenska, Marharyta Kolcheva, Martin Horak

FENS Forum 2024

ePosterNeuroscience

The role of disulfide bonds in GluN1 in the regulation of the early trafficking and functional properties of GluN1/GluN3A subtypes of NMDA receptors

Petra Zahumenská, Jakub Netolický, Marek Ladislav

FENS Forum 2024

ePosterNeuroscience

Vaults as trafficking granules in fear learning

Mason Musgrove

FENS Forum 2024

trafficking coverage

12 items

ePoster7
Seminar5
Domain spotlight

Explore how trafficking research is advancing inside Neuro.

Visit domain