viscosity
Latest
Deception, ExoNETs, SmushWare & Organic Data: Tech-facilitated neurorehabilitation & human-machine training
Making use of visual display technology and human-robotic interfaces, many researchers have illustrated various opportunities to distort visual and physical realities. We have had success with interventions such as error augmentation, sensory crossover, and negative viscosity. Judicial application of these techniques leads to training situations that enhance the learning process and can restore movement ability after neural injury. I will trace out clinical studies that have employed such technologies to improve the health and function, as well as share some leading-edge insights that include deceiving the patient, moving the "smarts" of software into the hardware, and examining clinical effectiveness
Slowing down the body slows down time (perception)
Interval timing is a fundamental component action, and is susceptible to motor-related temporal distortions. Previous studies have shown that movement biases temporal estimates, but have primarily considered self-modulated movement only. However, real-world encounters often include situations in which movement is restricted or perturbed by environmental factors. In the following experiments, we introduced viscous movement environments to externally modulate movement and investigated the resulting effects on temporal perception. In two separate tasks, participants timed auditory intervals while moving a robotic arm that randomly applied four levels of viscosity. Results demonstrated that higher viscosity led to shorter perceived durations. Using a drift-diffusion model and a Bayesian observer model, we confirmed these biasing effects arose from perceptual mechanisms, instead of biases in decision making. These findings suggest that environmental perturbations are an important factor in movement-related temporal distortions, and enhance the current understanding of the interactions of motor activity and cognitive processes. https://www.biorxiv.org/content/10.1101/2020.10.26.355396v1
viscosity coverage
2 items