← Back

Visual Attention

Topic spotlight
TopicNeuro

visual attention

Discover seminars, jobs, and research tagged with visual attention across Neuro.
11 curated items11 Seminars
Updated 11 months ago
11 items · visual attention

Latest

11 results
SeminarNeuroscienceRecording

Guiding Visual Attention in Dynamic Scenes

Nir Shalev
Haifa U
Jan 21, 2025
SeminarNeuroscience

Sensory Consequences of Visual Actions

Martin Rolfs
Humboldt-Universität zu Berlin
Dec 8, 2023

We use rapid eye, head, and body movements to extract information from a new part of the visual scene upon each new gaze fixation. But the consequences of such visual actions go beyond their intended sensory outcomes. On the one hand, intrinsic consequences accompany movement preparation as covert internal processes (e.g., predictive changes in the deployment of visual attention). On the other hand, visual actions have incidental consequences, side effects of moving the sensory surface to its intended goal (e.g., global motion of the retinal image during saccades). In this talk, I will present studies in which we investigated intrinsic and incidental sensory consequences of visual actions and their sensorimotor functions. Our results provide insights into continuously interacting top-down and bottom-up sensory processes, and they reify the necessity to study perception in connection to motor behavior that shapes its fundamental processes.

SeminarNeuroscience

The dynamics of temporal attention

Rachel Denison
Boston University
Nov 24, 2021

Selection is the hallmark of attention: processing improves for attended items but is relatively impaired for unattended items. It is well known that visual spatial attention changes sensory signals and perception in this selective fashion. In the work I will present, we asked whether and how attentional selection happens across time. First, our experiments revealed that voluntary temporal attention (attention to specific points in time) is selective, resulting in perceptual tradeoffs across time. Second, we measured small eye movements called microsaccades and found that directing voluntary temporal attention increases the stability of the eyes in anticipation of an attended stimulus. Third, we developed a computational model of dynamic attention, which proposes specific mechanisms underlying temporal attention and its selectivity. Lastly, I will mention how we are testing predictions of the model with MEG. Altogether, this research shows how precisely timed voluntary attention helps manage inherent limits in visual processing across short time intervals, advancing our understanding of attention as a dynamic process.

SeminarNeuroscienceRecording

The role of context in the deployment of visual attention

Dominique Lamy
Tel Aviv Univ.
May 4, 2021
SeminarNeuroscience

How do we find what we are looking for? The Guided Search 6.0 model

Jeremy Wolfe
Harvard Medical School
Feb 4, 2021

The talk will give a tour of Guided Search 6.0 (GS6), the latest evolution of Guided Search. Part 1 describes The Mechanics of Search. Because we cannot recognize more than a few items at a time, selective attention is used to prioritize items for processing. Selective attention to an item allows its features to be bound together into a representation that can be matched to a target template in memory or rejected as a distractor. The binding and recognition of an attended object is modeled as a diffusion process taking > 150 msec/item. Since selection occurs more frequently than that, it follows that multiple items are undergoing recognition at the same time, though asynchronously, making GS6 a hybrid serial and parallel model. If a target is not found, search terminates when an accumulating quitting signal reaches a threshold. Part 2 elaborates on the five sources of Guidance that are combined into a spatial “priority map” to guide the deployment of attention (hence “guided search”). These are (1) top-down and (2) bottom-up feature guidance, (3) prior history (e.g. priming), (4) reward, and (5) scene syntax and semantics. In GS6, the priority map is a dynamic attentional landscape that evolves over the course of search. In part, this is because the visual field is inhomogeneous. Part 3: That inhomogeneity imposes spatial constraints on search that described by three types of “functional visual field” (FVFs): (1) a resolution FVF, (2) an FVF governing exploratory eye movements, and (3) an FVF governing covert deployments of attention. Finally, in Part 4, we will consider that the internal representation of the search target, the “search template” is really two templates: a guiding template and a target template. Put these pieces together and you have GS6.

SeminarNeuroscienceRecording

The developing visual brain – answers and questions

Janette Atkinson & Oliver Braddick
UCL & Oxford
Oct 27, 2020

We will start our talk with a short video of our research, illustrating methods (some old and new) and findings that have provided our current understanding of how visual capabilities develop in infancy and early childhood. However, our research poses some outstanding questions. We will briefly discuss three issues, which are linked by a common focus on the development of visual attentional processing: (1) How do recurrent cortical loops contribute to development? Cortical selectivity (e.g., to orientation, motion, and binocular disparity) develops in the early months of life. However, these systems are not purely feedforward but depend on parallel pathways, with recurrent feedback loops playing a critical role. The development of diverse networks, particularly for motion processing, may explain changes in dynamic responses and resolve developmental data obtained with different methodologies. One possible role for these loops is in top-down attentional control of visual processing. (2) Why do hyperopic infants become strabismic (cross-eyes)? Binocular interaction is a particularly sensitive area of development. Standard clinical accounts suppose that long-sighted (hyperopic) refractive errors require accommodative effort, putting stress on the accommodation-convergence link that leads to its breakdown and strabismus. Our large-scale population screening studies of 9-month infants question this: hyperopic infants are at higher risk of strabismus and impaired vision (amblyopia and impaired attention) but these hyperopic infants often under- rather than over-accommodate. This poor accommodation may reflect poor early attention processing, possibly a ‘soft sign’ of subtle cerebral dysfunction. (3) What do many neurodevelopmental disorders have in common? Despite similar cognitive demands, global motion perception is much more impaired than global static form across diverse neurodevelopmental disorders including Down and Williams Syndromes, Fragile-X, Autism, children with premature birth and infants with perinatal brain injury. These deficits in motion processing are associated with deficits in other dorsal stream functions such as visuo-motor co-ordination and attentional control, a cluster we have called ‘dorsal stream vulnerability’. However, our neuroimaging measures related to motion coherence in typically developing children suggest that the critical areas for individual differences in global motion sensitivity are not early motion-processing areas such as V5/MT, but downstream parietal and frontal areas for decision processes on motion signals. Although these brain networks may also underlie attentional and visuo-motor deficits , we still do not know when and how these deficits differ across different disorders and between individual children. Answering these questions provide necessary steps, not only increasing our scientific understanding of human visual brain development, but also in designing appropriate interventions to help each child achieve their full potential.

SeminarNeuroscienceRecording

A Rare Visuospatial Disorder

Aimee Dollman
University of Cape Town
Aug 26, 2020

Cases with visuospatial abnormalities provide opportunities for understanding the underlying cognitive mechanisms. Three cases of visual mirror-reversal have been reported: AH (McCloskey, 2009), TM (McCloskey, Valtonen, & Sherman, 2006) and PR (Pflugshaupt et al., 2007). This research reports a fourth case, BS -- with focal occipital cortical dysgenesis -- who displays highly unusual visuospatial abnormalities. They initially produced mirror reversal errors similar to those of AH, who -- like the patient in question -- showed a selective developmental deficit. Extensive examination of BS revealed phenomena such as: mirror reversal errors (sometimes affecting only parts of the visual fields) in both horizontal and vertical planes; subjective representation of visual objects and words in distinct left and right visual fields; subjective duplication of objects of visual attention (not due to diplopia); uncertainty regarding the canonical upright orientation of everyday objects; mirror reversals during saccadic eye movements on oculomotor tasks; and failure to integrate visual with other sensory inputs (e.g., they feel themself moving backwards when visual information shows they are moving forward). Fewer errors are produced under conditions of certain visual variables. These and other findings have led the researchers to conclude that BS draws upon a subjective representation of visual space that is structured phenomenally much as it is anatomically in early visual cortex (i.e., rotated through 180 degrees, split into left and right fields, etc.). Despite this, BS functions remarkably well in their everyday life, apparently due to extensive compensatory mechanisms deployed at higher (executive) processing levels beyond the visual modality.

SeminarNeuroscience

A new computational framework for understanding vision in our brain

Zhaoping Li
University of Tuebingen and Max Planck Institute
Jul 19, 2020

Visual attention selects only a tiny fraction of visual input information for further processing. Selection starts in the primary visual cortex (V1), which creates a bottom-up saliency map to guide the fovea to selected visual locations via gaze shifts. This motivates a new framework that views vision as consisting of encoding, selection, and decoding stages, placing selection on center stage. It suggests a massive loss of non-selected information from V1 downstream along the visual pathway. Hence, feedback from downstream visual cortical areas to V1 for better decoding (recognition), through analysis-by- synthesis, should query for additional information and be mainly directed at the foveal region. Accordingly, non-foveal vision is not only poorer in spatial resolution, but also more susceptible to many illusions.

SeminarNeuroscience

A paradoxical kind of sleep In Drosophila melanogaster

Bruno van Swinderen
University of Queensland
Apr 30, 2020

The dynamic nature of sleep in most animals suggests distinct stages which serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioural methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during dFB-induced sleep, and we compared this to the effects of a sleep-promoting drug. We found that drug-induced spontaneous sleep decreased brain activity and connectivity, whereas dFB sleep was not different from wakefulness. Paradoxically, dFB-induced sleep was found to be even deeper than drug- induced sleep. When we probed the sleeping fly brain with salient visual stimuli, we found that the activity of visually-responsive neurons was blocked by dFB activation, confirming a disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a significant sleep function, by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity and connectivity remain similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.

visual attention coverage

11 items

Seminar11
Domain spotlight

Explore how visual attention research is advancing inside Neuro.

Visit domain