TopicNeuro

visual contrast

3 Seminars1 ePoster

Latest

SeminarNeuroscienceRecording

A sense without sensors: how non-temporal stimulus features influence the perception and the neural representation of time

Domenica Bueti
SISSA, Trieste (Italy)
Apr 19, 2023

Any sensory experience of the world, from the touch of a caress to the smile on our friend’s face, is embedded in time and it is often associated with the perception of the flow of it. The perception of time is therefore a peculiar sensory experience built without dedicated sensors. How the perception of time and the content of a sensory experience interact to give rise to this unique percept is unclear. A few empirical evidences show the existence of this interaction, for example the speed of a moving object or the number of items displayed on a computer screen can bias the perceived duration of those objects. However, to what extent the coding of time is embedded within the coding of the stimulus itself, is sustained by the activity of the same or distinct neural populations and subserved by similar or distinct neural mechanisms is far from clear. Addressing these puzzles represents a way to gain insight on the mechanism(s) through which the brain represents the passage of time. In my talk I will present behavioral and neuroimaging studies to show how concurrent changes of visual stimulus duration, speed, visual contrast and numerosity, shape and modulate brain’s and pupil’s responses and, in case of numerosity and time, influence the topographic organization of these features along the cortical visual hierarchy.

SeminarNeuroscience

A specialized role for entorhinal attractor dynamics in combining path integration and landmarks during navigation

Malcolm Campbell
Harvard
Mar 9, 2023

During navigation, animals estimate their position using path integration and landmarks. In a series of two studies, we used virtual reality and electrophysiology to dissect how these inputs combine to generate the brain’s spatial representations. In the first study (Campbell et al., 2018), we focused on the medial entorhinal cortex (MEC) and its set of navigationally-relevant cell types, including grid cells, border cells, and speed cells. We discovered that attractor dynamics could explain an array of initially puzzling MEC responses to virtual reality manipulations. This theoretical framework successfully predicted both MEC grid cell responses to additional virtual reality manipulations, as well as mouse behavior in a virtual path integration task. In the second study (Campbell*, Attinger* et al., 2021), we asked whether these principles generalize to other navigationally-relevant brain regions. We used Neuropixels probes to record thousands of neurons from MEC, primary visual cortex (V1), and retrosplenial cortex (RSC). In contrast to the prevailing view that “everything is everywhere all at once,” we identified a unique population of MEC neurons, overlapping with grid cells, that became active with striking spatial periodicity while head-fixed mice ran on a treadmill in darkness. These neurons exhibited unique cue-integration properties compared to other MEC, V1, or RSC neurons: they remapped more readily in response to conflicts between path integration and landmarks; they coded position prospectively as opposed to retrospectively; they upweighted path integration relative to landmarks in conditions of low visual contrast; and as a population, they exhibited a lower-dimensional activity structure. Based on these results, our current view is that MEC attractor dynamics play a privileged role in resolving conflicts between path integration and landmarks during navigation. Future work should include carefully designed causal manipulations to rigorously test this idea, and expand the theoretical framework to incorporate notions of uncertainty and optimality.

ePosterNeuroscience

Mice wiggle a wheel to boost the salience of low visual contrast stimuli

Naureen Ghani, The International Brain Laboratory

COSYNE 2025

visual contrast coverage

4 items

Seminar3
ePoster1
Domain spotlight

Explore how visual contrast research is advancing inside Neuro.

Visit domain