Latest

SeminarNeuroscience

Looking and listening while moving

Tom Freeman
Cardiff University
Nov 17, 2021

In this talk I’ll discuss our recent work on how visual and auditory cues to space are integrated as we move. There are at least 3 reasons why this turns out to be a difficult problem for the brain to solve (and us to understand!). First, vision and hearing start off in different coordinates (eye-centred vs head-centred), so they need a common reference frame in which to communicate. By preventing eye and head movements, this problem has been neatly sidestepped in the literature, yet self-movement is the norm. Second, self-movement creates visual and auditory image motion. Correct interpretation therefore requires some form of compensation. Third, vision and hearing encode motion in very different ways: vision contains dedicated motion detectors sensitive to speed, whereas hearing does not. We propose that some (all?) of these problems could be solved by considering the perception of audiovisual space as the integration of separate body-centred visual and auditory cues, the latter formed by integrating image motion with motor system signals and vestibular information. To test this claim, we use a classic cue integration framework, modified to account for cues that are biased and partially correlated. We find good evidence for the model based on simple judgements of audiovisual motion within a circular array of speakers and LEDs that surround the participant while they execute self-controlled head movement.

SeminarNeuroscienceRecording

Australian Bogong moths use a true stellar compass for long-distance navigation at night

Eric Warrant
University of Lund
Apr 19, 2021

Each spring, billions of Bogong moths escape hot conditions in different regions of southeast Australia by migrating over 1000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer. At the beginning of autumn the same individuals make a return migration to their breeding grounds to reproduce and die. To steer migration Bogong moths sense the Earth’s magnetic field and correlate its directional information with visual cues. In this presentation, we will show that a critically important visual cue is the distribution of starlight within the austral night sky. By tethering spring and autumn migratory moths in a flight simulator, we found that under natural dorsally-projected night skies, and in a nulled magnetic field (disabling the magnetic sense), moths flew in their seasonally appropriate migratory directions, turning in the opposite direction when the night sky was rotated 180°. Visual interneurons in the moth’s optic lobe and central brain responded vigorously to identical sky rotations. Migrating Bogong moths thus use the starry night sky as a true compass to distinguish geographic cardinal directions, the first invertebrate known to do so. These stellar cues are likely reinforced by the Earth’s magnetic field to create a robust compass mechanism for long-distance nocturnal navigation.

SeminarNeuroscience

Who can turn faster? Comparison of the head direction circuit of two species

Ioannis Pisokas
University of Edinburgh
Jul 20, 2020

Ants, bees and other insects have the ability to return to their nest or hive using a navigation strategy known as path integration. Similarly, fruit flies employ path integration to return to a previously visited food source. An important component of path integration is the ability of the insect to keep track of its heading relative to salient visual cues. A highly conserved brain region known as the central complex has been identified as being of key importance for the computations required for an insect to keep track of its heading. However, the similarities or differences of the underlying heading tracking circuit between species are not well understood. We sought to address this shortcoming by using reverse engineering techniques to derive the effective underlying neural circuits of two evolutionary distant species, the fruit fly and the locust. Our analysis revealed that regardless of the anatomical differences between the two species the essential circuit structure has not changed. Both effective neural circuits have the structural topology of a ring attractor with an eight-fold radial symmetry (Fig. 1). However, despite the strong similarities between the two ring attractors, there remain differences. Using computational modelling we found that two apparently small anatomical differences have significant functional effect on the ability of the two circuits to track fast rotational movements and to maintain a stable heading signal. In particular, the fruit fly circuit responds faster to abrupt heading changes of the animal while the locust circuit maintains a heading signal that is more robust to inhomogeneities in cell membrane properties and synaptic weights. We suggest that the effects of these differences are consistent with the behavioural ecology of the two species. On the one hand, the faster response of the ring attractor circuit in the fruit fly accommodates the fast body saccades that fruit flies are known to perform. On the other hand, the locust is a migratory species, so its behaviour demands maintenance of a defined heading for a long period of time. Our results highlight that even seemingly small differences in the distribution of dendritic fibres can have a significant effect on the dynamics of the effective ring attractor circuit with consequences for the behavioural capabilities of each species. These differences, emerging from morphologically distinct single neurons highlight the importance of a comparative approach to neuroscience.

visual cues coverage

3 items

Seminar3
Domain spotlight

Explore how visual cues research is advancing inside Neuro.

Visit domain