Visual System
visual system
Latest
Developmental emergence of personality
The Nature versus Nurture debate has generally been considered from the lens of genome versus experience dichotomy and has dominated our thinking about behavioral individuality and personality traits. In contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using the Drosophila melanogaster visual system, I will discuss our efforts to dissect how individuality in circuit wiring emerges during development, and how that helps generate individual behavioral variation.
Plasticity of the adult visual system
Modelling the fruit fly brain and body
Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.
Stability of visual processing in passive and active vision
The visual system faces a dual challenge. On the one hand, features of the natural visual environment should be stably processed - irrespective of ongoing wiring changes, representational drift, and behavior. On the other hand, eye, head, and body motion require a robust integration of pose and gaze shifts in visual computations for a stable perception of the world. We address these dimensions of stable visual processing by studying the circuit mechanism of long-term representational stability, focusing on the role of plasticity, network structure, experience, and behavioral state while recording large-scale neuronal activity with miniature two-photon microscopy.
Learning to see stuff
Humans are very good at visually recognizing materials and inferring their properties. Without touching surfaces, we can usually tell what they would feel like, and we enjoy vivid visual intuitions about how they typically behave. This is impressive because the retinal image that the visual system receives as input is the result of complex interactions between many physical processes. Somehow the brain has to disentangle these different factors. I will present some recent work in which we show that an unsupervised neural network trained on images of surfaces spontaneously learns to disentangle reflectance, lighting and shape. However, the disentanglement is not perfect, and we find that as a result the network not only predicts the broad successes of human gloss perception, but also the specific pattern of errors that humans exhibit on an image-by-image basis. I will argue this has important implications for thinking about appearance and vision more broadly.
Direction-selective ganglion cells in primate retina: a subcortical substrate for reflexive gaze stabilization?
To maintain a stable and clear image of the world, our eyes reflexively follow the direction in which a visual scene is moving. Such gaze stabilization mechanisms reduce image blur as we move in the environment. In non-primate mammals, this behavior is initiated by ON-type direction-selective ganglion cells (ON-DSGCs), which detect the direction of image motion and transmit signals to brainstem nuclei that drive compensatory eye movements. However, ON-DSGCs have not yet been functionally identified in primates, raising the possibility that the visual inputs that drive this behavior instead arise in the cortex. In this talk, I will present molecular, morphological and functional evidence for identification of an ON-DSGC in macaque retina. The presence of ON-DSGCs highlights the need to examine the contribution of subcortical retinal mechanisms to normal and aberrant gaze stabilization in the developing and mature visual system. More generally, our findings demonstrate the power of a multimodal approach to study sparsely represented primate RGC types.
Connecting performance benefits on visual tasks to neural mechanisms using convolutional neural networks
Behavioral studies have demonstrated that certain task features reliably enhance classification performance for challenging visual stimuli. These include extended image presentation time and the valid cueing of attention. Here, I will show how convolutional neural networks can be used as a model of the visual system that connects neural activity changes with such performance changes. Specifically, I will discuss how different anatomical forms of recurrence can account for better classification of noisy and degraded images with extended processing time. I will then show how experimentally-observed neural activity changes associated with feature attention lead to observed performance changes on detection tasks. I will also discuss the implications these results have for how we identify the neural mechanisms and architectures important for behavior.
Restructuring cortical feedback circuits
We hardly notice when there is a speck on our glasses, the obstructed visual information seems to be magically filled in. The mechanistic basis for this fundamental perceptual phenomenon has, however, remained obscure. What enables neurons in the visual system to respond to context when the stimulus is not available? While feedforward information drives the activity in cortex, feedback information is thought to provide contextual signals that are merely modulatory. We have made the discovery that mouse primary visual cortical neurons are strongly driven by feedback projections from higher visual areas when their feedforward sensory input from the retina is missing. This drive is so strong that it makes visual cortical neurons fire as much as if they were receiving a direct sensory input. These signals are likely used to predict input from the feedforward pathway. Preliminary results show that these feedback projections are strongly influenced by experience and learning.
Mouse visual cortex as a limited resource system that self-learns an ecologically-general representation
Studies of the mouse visual system have revealed a variety of visual brain areas in a roughly hierarchical arrangement, together with a multitude of behavioral capacities, ranging from stimulus-reward associations, to goal-directed navigation, and object-centric discriminations. However, an overall understanding of the mouse’s visual cortex organization, and how this organization supports visual behaviors, remains unknown. Here, we take a computational approach to help address these questions, providing a high-fidelity quantitative model of mouse visual cortex. By analyzing factors contributing to model fidelity, we identified key principles underlying the organization of mouse visual cortex. Structurally, we find that comparatively low-resolution and shallow structure were both important for model correctness. Functionally, we find that models trained with task-agnostic, unsupervised objective functions, based on the concept of contrastive embeddings were substantially better than models trained with supervised objectives. Finally, the unsupervised objective builds a general-purpose visual representation that enables the system to achieve better transfer on out-of-distribution visual, scene understanding and reward-based navigation tasks. Our results suggest that mouse visual cortex is a low-resolution, shallow network that makes best use of the mouse’s limited resources to create a light-weight, general-purpose visual system – in contrast to the deep, high-resolution, and more task-specific visual system of primates.
Development and evolution of neuronal connectivity
In most animal species including humans, commissural axons connect neurons on the left and right side of the nervous system. In humans, abnormal axon midline crossing during development causes a whole range of neurological disorders ranging from congenital mirror movements, horizontal gaze palsy, scoliosis or binocular vision deficits. The mechanisms which guide axons across the CNS midline were thought to be evolutionary conserved but our recent results suggesting that they differ across vertebrates. I will discuss the evolution of visual projection laterality during vertebrate evolution. In most vertebrates, camera-style eyes contain retinal ganglion cell (RGC) neurons projecting to visual centers on both sides of the brain. However, in fish, RGCs are thought to only innervate the contralateral side. Using 3D imaging and tissue clearing we found that bilateral visual projections exist in non-teleost fishes. We also found that the developmental program specifying visual system laterality differs between fishes and mammals. We are currently using various strategies to discover genes controlling the development of visual projections. I will also present ongoing work using 3D imaging techniques to study the development of the visual system in human embryo.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
Feedback controls what we see
We hardly notice when there is a speck on our glasses, the obstructed visual information seems to be magically filled in. The visual system uses visual context to predict the content of the stimulus. What enables neurons in the visual system to respond to context when the stimulus is not available? In cortex, sensory processing is based on a combination of feedforward information arriving from sensory organs, and feedback information that originates in higher-order areas. Whereas feedforward information drives the activity in cortex, feedback information is thought to provide contextual signals that are merely modulatory. We have made the exciting discovery that mouse primary visual cortical neurons are strongly driven by feedback projections from higher visual areas, in particular when their feedforward sensory input from the retina is missing. This drive is so strong that it makes visual cortical neurons fire as much as if they were receiving a direct sensory input.
Synthetic and natural images unlock the power of recurrency in primary visual cortex
During perception the visual system integrates current sensory evidence with previously acquired knowledge of the visual world. Presumably this computation relies on internal recurrent interactions. We record populations of neurons from the primary visual cortex of cats and macaque monkeys and find evidence for adaptive internal responses to structured stimulation that change on both slow and fast timescales. In the first experiment, we present abstract images, only briefly, a protocol known to produce strong and persistent recurrent responses in the primary visual cortex. We show that repetitive presentations of a large randomized set of images leads to enhanced stimulus encoding on a timescale of minutes to hours. The enhanced encoding preserves the representational details required for image reconstruction and can be detected in post-exposure spontaneous activity. In a second experiment, we show that the encoding of natural scenes across populations of V1 neurons is improved, over a timescale of hundreds of milliseconds, with the allocation of spatial attention. Given the hierarchical organization of the visual cortex, contextual information from the higher levels of the processing hierarchy, reflecting high-level image regularities, can inform the activity in V1 through feedback. We hypothesize that these fast attentional boosts in stimulus encoding rely on recurrent computations that capitalize on the presence of high-level visual features in natural scenes. We design control images dominated by low-level features and show that, in agreement with our hypothesis, the attentional benefits in stimulus encoding vanish. We conclude that, in the visual system, powerful recurrent processes optimize neuronal responses, already at the earliest stages of cortical processing.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
Why do some animals have more than two eyes?
The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.
What does time of day mean for vision?
Profound changes in the visual environment occur over the course of the day-night cycle. There is therefore a profound pressure for cells and circuits within the visual system to adjust their function over time, to match the prevailing visual environment. Here, I will discuss electrophysiological data collected from nocturnal and diurnal rodents that reveal how the visual code is ‘temporally optimised’ by 1) the retina’s circadian clock, and 2) a change in behavioural temporal niche.
Optimization at the Single Neuron Level: Prediction of Spike Sequences and Emergence of Synaptic Plasticity Mechanisms
Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We propose a plasticity rule based on pre-dictive processing, where the neuron learns a low-rank model of the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that maximally predict other synaptic inputs based on their temporal relations, which provide a solution to an optimization problem that can be implemented at the single-neuron level using only local information. Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs in a sequence. We show that this mechanism can explain the development of anticipatory motion signaling and recall in the visual system. Furthermore, we demonstrate that the learning rule gives rise to several experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.
Retinal responses to natural inputs
The research in my lab focuses on sensory signal processing, particularly in cases where sensory systems perform at or near the limits imposed by physics. Photon counting in the visual system is a beautiful example. At its peak sensitivity, the performance of the visual system is limited largely by the division of light into discrete photons. This observation has several implications for phototransduction and signal processing in the retina: rod photoreceptors must transduce single photon absorptions with high fidelity, single photon signals in photoreceptors, which are only 0.03 – 0.1 mV, must be reliably transmitted to second-order cells in the retina, and absorption of a single photon by a single rod must produce a noticeable change in the pattern of action potentials sent from the eye to the brain. My approach is to combine quantitative physiological experiments and theory to understand photon counting in terms of basic biophysical mechanisms. Fortunately there is more to visual perception than counting photons. The visual system is very adept at operating over a wide range of light intensities (about 12 orders of magnitude). Over most of this range, vision is mediated by cone photoreceptors. Thus adaptation is paramount to cone vision. Again one would like to understand quantitatively how the biophysical mechanisms involved in phototransduction, synaptic transmission, and neural coding contribute to adaptation.
Reorganisation of the human visual system in the absence of light input
Dynamic spatial processing in insect vision
How does the visual system of insects function in vastly different light intensities, process separate parts of the visual field in parallel, and cope with eye sizes that differ between individuals? This talk will give you the answers we receive from our unique(ly adorable) model system: hawkmoths.
How sleep contributes to visual perceptual learning
Sleep is crucial for the continuity and development of life. Sleep-related problems can alter brain function, and cause potentially severe psychological and behavioral consequences. However, the role of sleep in our mind and behavior is far from clear. In this talk, I will present our research on how sleep may play a role in visual perceptual learning (VPL) by using simultaneous magnetic resonance spectroscopy and polysomnography in human subjects. We measured the concentrations of neurotransmitters in the early visual areas during sleep and obtained the excitation/inhibition (E/I) ratio which represents the amount of plasticity in the visual system. We found that the E/I ratio significantly increased during NREM sleep while it decreased during REM sleep. The E/I ratio during NREM sleep was correlated with offline performance gains by sleep, while the E/I ratio during REM sleep was correlated with the amount of learning stabilization. These suggest that NREM sleep increases plasticity, while REM sleep decreases it to solidify once enhanced learning. NREM and REM sleep may play complementary roles, reflected by significantly different neurochemical processing, in VPL.
A Panoramic View on Vision
Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. By deploying an efficient coding argument, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. To test this experimentally, developed a simple, novel imaging system that is indispensable for studies at this scale. In agreement with our predictions, we could show that receptive fields of retinal ganglion cells change their shape along the dorsoventral axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types.
Attention to visual motion: shaping sensation into perception
Evolution has endowed primates, including humans, with a powerful visual system, seemingly providing us with a detailed perception of our surroundings. But in reality the underlying process is one of active filtering, enhancement and reshaping. For visual motion perception, the dorsal pathway in primate visual cortex and in particular area MT/V5 is considered to be of critical importance. Combining physiological and psychophysical approaches we have used the processing and perception of visual motion and area MT/V5 as a model for the interaction of sensory (bottom-up) signals with cognitive (top-down) modulatory influences that characterizes visual perception. Our findings document how this interaction enables visual cortex to actively generate a neural representation of the environment that combines the high-performance sensory periphery with selective modulatory influences for producing an “integrated saliency map’ of the environment.
How does a neuron decide when and where to make a synapse?
Precise synaptic connectivity is a prerequisite for the function of neural circuits, yet individual neurons, taken out of their developmental context, readily form unspecific synapses. How does genetically encoded brain wiring deal with this apparent contradiction? Brain wiring is a developmental growth process that is not only characterized by precision, but also flexibility and robustness. As in any other growth process, cellular interactions are restricted in space and time. Correspondingly, molecular and cellular interactions are restricted to those that 'get to see' each other during development. This seminar will explore the question how neurons decide when and where to make synapses using the Drosophila visual system as a model. New findings reveal that pattern formation during growth and the kinetics of live neuronal interactions restrict synapse formation and partner choice for neurons that are not otherwise prevented from making incorrect synapses in this system. For example, cell biological mechanisms like autophagy as well as developmental temperature restrict inappropriate partner choice through a process of kinetic exclusion that critically contributes to wiring specificity. The seminar will explore these and other neuronal strategies when and where to make synapses during developmental growth that contribute to precise, flexible and robust outcomes in brain wiring.
What does the primary visual cortex tell us about object recognition?
Object recognition relies on the complex visual representations in cortical areas at the top of the ventral stream hierarchy. While these are thought to be derived from low-level stages of visual processing, this has not been shown, yet. Here, I describe the results of two projects exploring the contributions of primary visual cortex (V1) processing to object recognition using artificial neural networks (ANNs). First, we developed hundreds of ANN-based V1 models and evaluated how their single neurons approximate those in the macaque V1. We found that, for some models, single neurons in intermediate layers are similar to their biological counterparts, and that the distributions of their response properties approximately match those in V1. Furthermore, we observed that models that better matched macaque V1 were also more aligned with human behavior, suggesting that object recognition is derived from low-level. Motivated by these results, we then studied how an ANN’s robustness to image perturbations relates to its ability to predict V1 responses. Despite their high performance in object recognition tasks, ANNs can be fooled by imperceptibly small, explicitly crafted perturbations. We observed that ANNs that better predicted V1 neuronal activity were also more robust to adversarial attacks. Inspired by this, we developed VOneNets, a new class of hybrid ANN vision models. Each VOneNet contains a fixed neural network front-end that simulates primate V1 followed by a neural network back-end adapted from current computer vision models. After training, VOneNets were substantially more robust, outperforming state-of-the-art methods on a set of perturbations. While current neural network architectures are arguably brain-inspired, these results demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in computer vision applications and results in better models of the primate ventral stream and object recognition behavior.
A novel form of retinotopy in area V2 highlights location-dependent feature selectivity in the visual system
Topographic maps are a prominent feature of brain organization, reflecting local and large-scale representation of the sensory surface. Traditionally, such representations in early visual areas are conceived as retinotopic maps preserving ego-centric retinal spatial location while ensuring that other features of visual input are uniformly represented for every location in space. I will discuss our recent findings of a striking departure from this simple mapping in the secondary visual area (V2) of the tree shrew that is best described as a sinusoidal transformation of the visual field. This sinusoidal topography is ideal for achieving uniform coverage in an elongated area like V2 as predicted by mathematical models designed for wiring minimization, and provides a novel explanation for stripe-like patterns of intra-cortical connections and functional response properties in V2. Our findings suggest that cortical circuits flexibly implement solutions to sensory surface representation, with dramatic consequences for large-scale cortical organization. Furthermore our work challenges the framework of relatively independent encoding of location and features in the visual system, showing instead location-dependent feature sensitivity produced by specialized processing of different features in different spatial locations. In the second part of the talk, I will propose that location-dependent feature sensitivity is a fundamental organizing principle of the visual system that achieves efficient representation of positional regularities in visual input, and reflects the evolutionary selection of sensory and motor circuits to optimally represent behaviorally relevant information. The relevant papers can be found here: V2 retinotopy (Sedigh-Sarvestani et al. Neuron, 2021) Location-dependent feature sensitivity (Sedigh-Sarvestani et al. Under Review, 2022)
Wiring Minimization of Deep Neural Networks Reveal Conditions in which Multiple Visuotopic Areas Emerge
The visual system is characterized by multiple mirrored visuotopic maps, with each repetition corresponding to a different visual area. In this work we explore whether such visuotopic organization can emerge as a result of minimizing the total wire length between neurons connected in a deep hierarchical network. Our results show that networks with purely feedforward connectivity typically result in a single visuotopic map, and in certain cases no visuotopic map emerges. However, when we modify the network by introducing lateral connections, with sufficient lateral connectivity among neurons within layers, multiple visuotopic maps emerge, where some connectivity motifs yield mirrored alternations of visuotopic maps–a signature of biological visual system areas. These results demonstrate that different connectivity profiles have different emergent organizations under the minimum total wire length hypothesis, and highlight that characterizing the large-scale spatial organizing of tuning properties in a biological system might also provide insights into the underlying connectivity.
NMC4 Short Talk: Hypothesis-neutral response-optimized models of higher-order visual cortex reveal strong semantic selectivity
Modeling neural responses to naturalistic stimuli has been instrumental in advancing our understanding of the visual system. Dominant computational modeling efforts in this direction have been deeply rooted in preconceived hypotheses. In contrast, hypothesis-neutral computational methodologies with minimal apriorism which bring neuroscience data directly to bear on the model development process are likely to be much more flexible and effective in modeling and understanding tuning properties throughout the visual system. In this study, we develop a hypothesis-neutral approach and characterize response selectivity in the human visual cortex exhaustively and systematically via response-optimized deep neural network models. First, we leverage the unprecedented scale and quality of the recently released Natural Scenes Dataset to constrain parametrized neural models of higher-order visual systems and achieve novel predictive precision, in some cases, significantly outperforming the predictive success of state-of-the-art task-optimized models. Next, we ask what kinds of functional properties emerge spontaneously in these response-optimized models? We examine trained networks through structural ( feature visualizations) as well as functional analysis (feature verbalizations) by running `virtual' fMRI experiments on large-scale probe datasets. Strikingly, despite no category-level supervision, since the models are solely optimized for brain response prediction from scratch, the units in the networks after optimization act as detectors for semantic concepts like `faces' or `words', thereby providing one of the strongest evidences for categorical selectivity in these visual areas. The observed selectivity in model neurons raises another question: are the category-selective units simply functioning as detectors for their preferred category or are they a by-product of a non-category-specific visual processing mechanism? To investigate this, we create selective deprivations in the visual diet of these response-optimized networks and study semantic selectivity in the resulting `deprived' networks, thereby also shedding light on the role of specific visual experiences in shaping neuronal tuning. Together with this new class of data-driven models and novel model interpretability techniques, our study illustrates that DNN models of visual cortex need not be conceived as obscure models with limited explanatory power, rather as powerful, unifying tools for probing the nature of representations and computations in the brain.
NMC4 Short Talk: Directly interfacing brain and deep networks exposes non-hierarchical visual processing
A recent approach to understanding the mammalian visual system is to show correspondence between the sequential stages of processing in the ventral stream with layers in a deep convolutional neural network (DCNN), providing evidence that visual information is processed hierarchically, with successive stages containing ever higher-level information. However, correspondence is usually defined as shared variance between brain region and model layer. We propose that task-relevant variance is a stricter test: If a DCNN layer corresponds to a brain region, then substituting the model’s activity with brain activity should successfully drive the model’s object recognition decision. Using this approach on three datasets (human fMRI and macaque neuron firing rates) we found that in contrast to the hierarchical view, all ventral stream regions corresponded best to later model layers. That is, all regions contain high-level information about object category. We hypothesised that this is due to recurrent connections propagating high-level visual information from later regions back to early regions, in contrast to the exclusively feed-forward connectivity of DCNNs. Using task-relevant correspondence with a late DCNN layer akin to a tracer, we used Granger causal modelling to show late-DCNN correspondence in IT drives correspondence in V4. Our analysis suggests, effectively, that no ventral stream region can be appropriately characterised as ‘early’ beyond 70ms after stimulus presentation, challenging hierarchical models. More broadly, we ask what it means for a model component and brain region to correspond: beyond quantifying shared variance, we must consider the functional role in the computation. We also demonstrate that using a DCNN to decode high-level conceptual information from ventral stream produces a general mapping from brain to model activation space, which generalises to novel classes held-out from training data. This suggests future possibilities for brain-machine interface with high-level conceptual information, beyond current designs that interface with the sensorimotor periphery.
Space and its computational challenges
How our senses work both separately and together involves rich computational problems. I will discuss the spatial and representational problems faced by the visual and auditory system, focusing on two issues. 1. How does the brain correct for discrepancies in the visual and auditory spatial reference frames? I will describe our recent discovery of a novel type of otoacoustic emission, the eye movement related eardrum oscillation, or EMREO (Gruters et al, PNAS 2018). 2. How does the brain encode more than one stimulus at a time? I will discuss evidence for neural time-division multiplexing, in which neural activity fluctuates across time to allow representations to encode more than one simultaneous stimulus (Caruso et al, Nat Comm 2018). These findings all emerged from experimentally testing computational models regarding spatial representations and their transformations within and across sensory pathways. Further, they speak to several general problems confronting modern neuroscience such as the hierarchical organization of brain pathways and limits on perceptual/cognitive processing.
Target detection in the natural world
Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons that have a limited bandwidth to encode almost impossibly large input ranges. Importantly, natural scenes are not random, and peripheral visual systems have therefore evolved to reduce the predictable redundancy. The vertebrate visual cortex is also optimally tuned to the spatial statistics of natural scenes, but much less is known about how the insect brain responds to these. We are redressing this deficiency using several techniques. Olga Dyakova uses exquisite image manipulation to give natural images unnatural image statistics, or vice versa. Marissa Holden then uses these images as stimuli in electrophysiological recordings of neurons in the fly optic lobes, to see how the brain codes for the statistics typically encountered in natural scenes, and Olga Dyakova measures the behavioral optomotor response on our trackball set-up.
Mature retina is resilient to partial photoreceptor loss
I will discuss recent findings from our lab about the effects of partial photoreceptor loss on the retinal circuit’s structure and function. I will relate this work to the question of whether the visual system can distinguish between changes in light level and photoreceptor number.
An optimal population code for global motion estimation in local direction-selective cells
Neuronal computations are matched to optimally encode the sensory information that is available and relevant for the animal. However, the physical distribution of sensory information is often shaped by the animal’s own behavior. One prominent example is the encoding of optic flow fields that are generated during self-motion of the animal and will therefore depend on the type of locomotion. How evolution has matched computational resources to the behavioral constraints of an animal is not known. Here we use in vivo two photon imaging to record from a population of >3.500 local-direction selective cells. Our data show that the local direction-selective T4/T5 neurons in Drosophila form a population code that is matched to represent optic flow fields generated during translational and rotational self-motion of the fly. This coding principle for optic flow is reminiscent to the population code of local direction-selective ganglion cells in the mouse retina, where four direction-selective ganglion cells encode four different axes of self-motion encountered during walking (Sabbah et al., 2017). However, in flies we find six different subtypes of T4 and T5 cells that, at the population level, represent six axes of self-motion of the fly. The four uniformly tuned T4/T5 subtypes described previously represent a local snapshot (Maisak et al. 2013). The encoding of six types of optic flow in the fly as compared to four types of optic flow in mice might be matched to the high degrees of freedom encountered during flight. Thus, a population code for optic flow appears to be a general coding principle of visual systems, resulting from convergent evolution, but matching the individual ethological constraints of the animal.
Untitled Seminar
Laura Fenlon (Australia): Time shapes all brains: timing of a conserved transcriptional network underlies divergent cortical connectivity routes in mammalian brain development and evolution; Laurent Nguyen (Belgium): Regulation of cerebral cortex morphogenesis by migrating cells; Carol Ann Mason (USA): Wiring the eye to brain for binocular vision: lessons from the albino visual system. Thomas Perlmann (Sweden): Interrogating dopamine neuron development at the single cell level
Demystifying the richness of visual perception
Human vision is full of puzzles. Observers can grasp the essence of a scene in an instant, yet when probed for details they are at a loss. People have trouble finding their keys, yet they may be quite visible once found. How does one explain this combination of marvelous successes with quirky failures? I will describe our attempts to develop a unifying theory that brings a satisfying order to multiple phenomena. One key is to understand peripheral vision. A visual system cannot process everything with full fidelity, and therefore must lose some information. Peripheral vision must condense a mass of information into a succinct representation that nonetheless carries the information needed for vision at a glance. We have proposed that the visual system deals with limited capacity in part by representing its input in terms of a rich set of local image statistics, where the local regions grow — and the representation becomes less precise — with distance from fixation. This scheme trades off computation of sophisticated image features at the expense of spatial localization of those features. What are the implications of such an encoding scheme? Critical to our understanding has been the use of methodologies for visualizing the equivalence classes of the model. These visualizations allow one to quickly see that many of the puzzles of human vision may arise from a single encoding mechanism. They have suggested new experiments and predicted unexpected phenomena. Furthermore, visualization of the equivalence classes has facilitated the generation of testable model predictions, allowing us to study the effects of this relatively low-level encoding on a wide range of higher-level tasks. Peripheral vision helps explain many of the puzzles of vision, but some remain. By examining the phenomena that cannot be explained by peripheral vision, we gain insight into the nature of additional capacity limits in vision. In particular, I will suggest that decision processes face general-purpose limits on the complexity of the tasks they can perform at a given time.
What is the function of auditory cortex when it develops in the absence of acoustic input?
Cortical plasticity is the neural mechanism by which the cerebrum adapts itself to its environment, while at the same time making it vulnerable to impoverished sensory or developmental experiences. Like the visual system, auditory development passes through a series of sensitive periods in which circuits and connections are established and then refined by experience. Current research is expanding our understanding of cerebral processing and organization in the deaf. In the congenitally deaf, higher-order areas of "deaf" auditory cortex demonstrate significant crossmodal plasticity with neurons responding to visual and somatosensory stimuli. This crucial cerebral function results in compensatory plasticity. Not only can the remaining inputs reorganize to substitute for those lost, but this additional circuitry also confers enhanced abilities to the remaining systems. In this presentation we will review our present understanding of the structure and function of “deaf” auditory cortex using psychophysical, electrophysiological, and connectional anatomy approaches and consider how this knowledge informs our expectations of the capabilities of cochlear implants in the developing brain.
What Art can tell us about the Brain
Artists have been doing experiments on vision longer than neurobiologists. Some major works of art have provided insights as to how we see; some of these insights are so undamental that they can be understood in terms of the underlying neurobiology. For example, artists have long realized that color and luminance can play independent roles in visual perception. Picasso said, "Colors are only symbols. Reality is to be found in luminance alone." This observation has a parallel in the functional subdivision of our visual systems, where color and luminance are processed by the evolutionarily newer, primate-specific What system, and the older, colorblind, Where (or How) system. Many techniques developed over the centuries by artists can be understood in terms of the parallel organization of our visual systems. I will explore how the segregation of color and luminance processing are the basis for why some Impressionist paintings seem to shimmer, why some op art paintings seem to move, some principles of Matisse's use of color, and how the Impressionists painted "air". Central and peripheral vision are distinct, and I will show how the differences in resolution across our visual field make the Mona Lisa's smile elusive, and produce a dynamic illusion in Pointillist paintings, Chuck Close paintings, and photomosaics. I will explore how artists have figured out important features about how our brains extract relevant information about faces and objects, and I will discuss why learning disabilities may be associated with artistic talent.
Analyzing Retinal Disease Using Electron Microscopic Connectomics
John DowlingJohn E. Dowling received his AB and PhD from Harvard University. He taught in the Biology Department at Harvard from 1961 to 1964, first as an Instructor, then as assistant professor. In 1964 he moved to Johns Hopkins University, where he held an appointment as associate professor of Ophthalmology and Biophysics. He returned to Harvard as professor of Biology in 1971, was the Maria Moors Cabot Professor of Natural Sciences from 1971-2001, Harvard College professor from 1999-2004 and is presently the Gordon and Llura Gund Professor of Neurosciences. Dowling was chairman of the Biology Department at Harvard from 1975 to 1978 and served as associate dean of the faculty of Arts and Sciences from 1980 to 1984. He was Master of Leverett House at Harvard from 1981-1998 and currently serves as president of the Corporation of The Marine Biological Laboratory in Woods Hole. He is a Fellow of the American Academy of Arts and Sciences, a member of the National Academy of Sciences and a member of the American Philosophical Society. Awards that Dowling received include the Friedenwald Medal from the Association of Research in Ophthalmology and Vision in 1970, the Annual Award of the New England Ophthalmological Society in 1979, the Retinal Research Foundation Award for Retinal Research in 1981, an Alcon Vision Research Recognition Award in 1986, a National Eye Institute's MERIT award in 1987, the Von Sallman Prize in 1992, The Helen Keller Prize for Vision Research in 2000 and the Llura Ligget Gund Award for Lifetime Achievement and Recognition of Contribution to the Foundation Fighting Blindness in 2001. He was granted an honorary MD degree by the University of Lund (Sweden) in 1982 and an honorary Doctor of Laws degree from Dalhousie University (Canada) in 2012. Dowling's research interests have focused on the vertebrate retina as a model piece of the brain. He and his collaborators have long been interested in the functional organization of the retina, studying its synaptic organization, the electrical responses of the retinal neurons, and the mechanisms underlying neurotransmission and neuromodulation in the retina. Dowling became interested in zebrafish as a system in which one could explore the development and genetics of the vertebrate retina about 20 years ago. Part of his research team has focused on retinal development in zebrafish and the role of retinoic acid in early eye and photoreceptor development. A second group has developed behavioral tests to isolate mutations, both recessive and dominant, specific to the visual system.
The role of motion in localizing objects
Everything we see has a location. We know where things are before we know what they are. But how do we know where things are? Receptive fields in the visual system specify location but neural delays lead to serious errors whenever targets or eyes are moving. Motion may be the problem here but motion can also be the solution, correcting for the effects of delays and eye movements. To demonstrate this, I will present results from three motion illusions where perceived location differs radically from physical location. These help understand how and where position is coded. We first look at the effects of a target’s simple forward motion on its perceived location. Second, we look at perceived location of a target that has internal motion as well as forward motion. The two directions combine to produce an illusory path. This “double-drift” illusion strongly affects perceived position but, surprisingly, not eye movements or attention. Even more surprising, fMRI shows that the shifted percept does not emerge in the visual cortex but is seen instead in the frontal lobes. Finally, we report that a moving frame also shifts the perceived positions of dots flashed within it. Participants report the dot positions relative to the frame, as if the frame were not moving. These frame-induced position effects suggest a link to visual stability where we see a steady world despite massive displacements during saccades. These motion-based effects on perceived location lead to new insights concerning how and where position is coded in the brain.
Using opsin genes to see through the eyes of a fish
Many animals are highly visual. They view their world through photoreceptors sensitive to different wavelengths of light. Animal survival and optimal behavioral performance may select for varying photoreceptor sensitivities depending on animal habitat or visual tasks. Our goal is to understand what drives visual diversity from both an evolutionary and molecular perspective. The group of more than 2000 cichlid fish species are an ideal system for examining such diversity. Cichlid are a colorful group of fresh water fishes. They have undergone adaptive radiation throughout Africa and the new world and occur in rivers and lakes that vary in water clarity. They are also behaviorally complex, having diverse behaviors for foraging, mate choice and even parental care. As a result, cichlids have highly diverse visual systems with cone sensitivities shifting by 30-90 nm between species. Although this group has seven cone opsin genes, individual species differ in which subset of the cone opsins they express. Some species show developmental shifts in opsin expression, switching from shorter to longer wavelength opsins through ontogeny. Other species modify that developmental program to express just one of the sets, causing the large sensitivity differences. Cichlids are therefore natural mutants for opsin expression. We have used cichlid diversity to explore the relationship between visual sensitivities and ecology. We have also exploited the genomic power of the cichlid system to identify genes and mutations that cause opsin expression shifts. Ultimately, our goal is to learn how different cichlid species see the world and whether differences matter. Behavioral experiments suggest they do indeed use color vision to survive and thrive. Cichlids therefore are a unique model for exploring how visual systems evolve in a changing world.
“From the Sublime to the Stomatopod: the story from beginning to nowhere near the end.”
“Call me a marine vision scientist. Some years ago - never mind how long precisely - having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see what animals see in the watery part of the world. It is a way I have of dividing off the spectrum, and regulating circular polarisation.” Sometimes I wish I had just set out to harpoon a white whale as it would have been easier than studying stomatopod (mantis shrimp) vision. Nowhere near as much fun of course and certainly less dangerous so in this presentation I track the history of discovery and confusion that stomatopods deliver in trying to understand what the do actually see. The talk unashamedly borrows from that of Mike Bok a few weeks ago (April 13th 2021 “The Blurry Beginnings: etc” talk) as an introduction to the system (do go look at his talk again, it is beautiful!) and goes both backwards and forwards in time, trying to provide an explanation for the design of this visual system. The journey is again one of retinal anatomy and physiology, neuroanatomy, electrophysiology, behaviour and body ornaments but this time focusses more on polarisation vision (Mike covered the colour stuff well). There is a comparative section looking at the cephalopods too and by the end, I hope you will understand where we are at with trying to understand this extraordinary way of seeing the world and why we ‘pod-people’ wave our arms around so much when asked to explain; what do stomatopods see? Maybe, to butcher another quote: “mantis shrimp have been rendered visually beautiful for vision’s sake.”
Novel Object Detection and Multiplexed Motion Representation in Retinal Bipolar Cells
Detection of motion is essential for survival, but how the visual system processes moving stimuli is not fully understood. Here, based on a detailed analysis of glutamate release from bipolar cells, we outline the rules that govern the representation of object motion in the early processing stages. Our main findings are as follows: (1) Motion processing begins already at the first retinal synapse. (2) The shape and the amplitude of motion responses cannot be reliably predicted from bipolar cell responses to stationary objects. (3) Enhanced representation of novel objects - particularly in bipolar cells with transient dynamics. (4) Response amplitude in bipolar cells matches visual salience reported in humans: suddenly appearing objects > novel motion > existing motion. These findings can be explained by antagonistic interactions in the center-surround receptive field, demonstrate that despite their simple operational concepts, classical center-surround receptive fields enable sophisticated visual computations.
Neuro-Immune Coupling: How the Immune System Sculpts Brain Circuitry
In this lecture, Dr Stevens will discuss recent work that implicates brain immune cells, called microglia, in sculpting of synaptic connections during development and their relevance to autism, schizophrenia and other brain disorders. Her recent work revealed a key role for microglia and a group of immune related molecules called complement in normal developmental synaptic pruning, a normal process required to establish precise brain wiring. Emerging evidence suggests aberrant regulation of this pruning pathway may contribute to synaptic and cognitive dysfunction in a host of brain disorders, including schizophrenia. Recent research has revealed that a person’s risk of schizophrenia is increased if they inherit specific variants in complement C4, gene plays a well-known role in the immune system but also helps sculpt developing synapses in the mouse visual system (Sekar et al., 2016). Together these findings may help explain known features of schizophrenia, including reduced numbers of synapses in key cortical regions and an adolescent age of onset that corresponds with developmentally timed waves of synaptic pruning in these regions. Stevens will discuss this and ongoing work to understand the mechanisms by which complement and microglia prune specific synapses in the brain. A deeper understanding of how these immune mechanisms mediate synaptic pruning may provide novel insight into how to protect synapses in autism and other brain disorders, including Alzheimer’s and Huntington’s Disease.
Towards a neurally mechanistic understanding of visual cognition
I am interested in developing a neurally mechanistic understanding of how primate brains represent the world through its visual system and how such representations enable a remarkable set of intelligent behaviors. In this talk, I will primarily highlight aspects of my current research that focuses on dissecting the brain circuits that support core object recognition behavior (primates’ ability to categorize objects within hundreds of milliseconds) in non-human primates. On the one hand, my work empirically examines how well computational models of the primate ventral visual pathways embed knowledge of the visual brain function (e.g., Bashivan*, Kar*, DiCarlo, Science, 2019). On the other hand, my work has led to various functional and architectural insights that help improve such brain models. For instance, we have exposed the necessity of recurrent computations in primate core object recognition (Kar et al., Nature Neuroscience, 2019), one that is strikingly missing from most feedforward artificial neural network models. Specifically, we have observed that the primate ventral stream requires fast recurrent processing via ventrolateral PFC for robust core object recognition (Kar and DiCarlo, Neuron, 2021). In addition, I have been currently developing various chemogenetic strategies to causally target specific bidirectional neural circuits in the macaque brain during multiple object recognition tasks to further probe their relevance during this behavior. I plan to transform these data and insights into tangible progress in neuroscience via my collaboration with various computational groups and building improved brain models of object recognition. I hope to end the talk with a brief glimpse of some of my planned future work!
Visual processing of feedforward and feedback signals in mouse thalamus
Traditionally, the dorsolateral geniculate nucleus (dLGN) of the thalamus has been considered a feedforward relay station for retinal signals to reach primary visual cortex. The local and long-range circuits of dLGN, however, suggest that this view is not correct. Indeed, besides the thalamo-cortical relay cells, dLGN contains local inhibitory interneurons, and receives not only feedforward input from the retina, but also massive direct and indirect feedback from primary visual cortex. Furthermore, it is one of the earliest processing stages in the visual system that integrates visual information with neuromodulatory signals.
The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium
Join the Department of Bioengineering on the 26th May at 9:00am for The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium. This year’s lecture speaker will be distinguished bioengineer and neuroscientist Professor Mandyam V. Srinivasan AM FRS, from the University of Queensland. Professor Srinivasan studies visual systems, particularly those of bees and birds. His research has revealed how flying insects negotiate narrow gaps, regulate the height and speed of flight, estimate distance flown, and orchestrate smooth landings. Apart from enhancing fundamental knowledge, these findings are leading to novel, biologically inspired approaches to the design of guidance systems for unmanned aerial vehicles with applications in the areas of surveillance, security and planetary exploration. Following Professor Srinivasan’s lecture will be the Bioinspired GNC Mini Symposium with guest speakers from Google Deepmind, Imperial College London, the University of Würzburg and the University of Konstanz giving talks on their research into autonomous robot navigation, neural mechanisms of compass orientation in insects and computational approaches to motor control.
Vision outside of the visual system (in Drosophila)
We seek to understand the control of behavior – by animals, their brains, and their neurons. Reiser and his team are focused on the fly visual system, using modern methods from the Drosophila toolkit to understand how visual pathways are involved in specific behaviors. Due to the recent connectomics explosion, they now study the brain-wide networks organizing visual information for behavior control. The team combines explorations of visually guided behaviors with functional investigations of specific cell types throughout the fly brain. The Reiser lab actively develops and disseminates new methods and instruments enabling increasingly precise quantification of animal behavior.
Smart perception?: Gestalt grouping, perceptual averaging, and memory capacity
It seems we see the world in full detail. However, the eye is not a camera nor is the brain a computer. Incredible metabolic constraints render us unable to encode more than a fraction of information available in each glance. Instead, our illusion of stable and complete perception is accomplished by parsimonious representation relying on natural order inherent in the surrounding environment. I will begin by discussing previous behavioral work from our lab demonstrating one such strategy by which the visual system represents average properties of Gestalt-grouped sets of individual objects, warping individual object representations toward the Gestalt-defined mean. I will then discuss on-going work using a behavioral index of averaging Gestalt-grouped information established in our previous work in conjunction with an ERP-index of VSTM capacity (the CDA) to measure whether the Gestalt-grouping and perceptual averaging strategy acts to boost memory capacity above the classic “four-item” limit. Finally, I will outline our pre-registered study to determine whether this perceptual strategy is indeed engaged in a “smart” manner under normal circumstances, or compromises fidelity for capacity by perceptually-averaging in trials with only four items that could otherwise be individually represented.
Imaging the influences of sensory experience on visual system circuit development
Using a combination of in vivo imaging of neuronal circuit functional and structural dynamics, we have investigated the mechanisms by which patterned neural activity and sensory experience alter connectivity in the developing brain. We have identified, in addition to the long-hypothesized Hebbian structural plasticity mechanisms, a kind of plasticity induced by the absence of correlated firing that we dubbed “Stentian plasticity”. In the talk I will discuss the phenomenology and some mechanistic insights regarding Stentian mechanisms in brain development. Further, I will show how glia may have a key role in circuit remodeling during development. These studies have led us to an appreciation of the importance of neuron-glia interactions in early development and the ability of patterned activity to guide circuit wiring.
The generation of neural diversity
Claude Desplan is a Silver Professor of Biology and Neuroscience at NYU. He was born in Algeria and was trained at Ecole Normale Supérieure St. Cloud, France. He received his DSc at INSERM in Paris in 1983 and joined Pat O’Farrell at UCSF as a postdoc. There he demonstrated that the homeodomain, a conserved signature of many developmental genes, is a DNA binding motif. Currently, Dr. Desplan works at NYU where he investigates the generation of neural diversity using the Drosophila visual system.
visual system coverage
50 items