← Back

White Noise

Topic spotlight
TopicNeuro

white noise

Discover seminars, jobs, and research tagged with white noise across Neuro.
2 curated items2 Seminars
Updated almost 3 years ago
2 items · white noise

Latest

2 results
SeminarNeuroscienceRecording

Does subjective time interact with the heart rate?

Saeedeh Sadegh
Cornell University, New York
Jan 25, 2023

Decades of research have investigated the relationship between perception of time and heart rate with often mixed results. In search of such a relationship, I will present my far journey between two projects: from time perception in the realistic VR experience of crowded subway trips in the order of minutes (project 1); to the perceived duration of sub-second white noise tones (project 2). Heart rate had multiple concurrent relationships with subjective temporal distortions for the sub-second tones, while the effects were lacking or weak for the supra-minute subway trips. What does the heart have to do with sub-second time perception? We addressed this question with a cardiac drift-diffusion model, demonstrating the sensory accumulation of temporal evidence as a function of heart rate.

SeminarNeuroscienceRecording

Error correction and reliability timescale in converging cortical networks

Eran Stark
Tel Aviv University
Apr 29, 2021

Rapidly changing inputs such as visual scenes and auditory landscapes are transmitted over several synaptic interfaces and perceived with little loss of detail, but individual neurons are typically “noisy” and cortico-cortical connections are typically “weak”. To understand how information embodied in spike train is transmitted in a lossless manner, we focus on a single synaptic interface: between pyramidal cells and putative interneurons. Using arbitrary white noise patterns injected intra-cortically as photocurrents to freely-moving mice, we find that directly-activated cells exhibit precision of several milliseconds, but post-synaptic, indirectly-activated cells exhibit higher precision. Considering multiple identical messages, the reliability of directly-activated cells peaks at a timescale of dozens of milliseconds, whereas indirectly-activated cells exhibit an order-of-magnitude faster timescale. Using data-driven modelling, we find that error correction is consistent with non-linear amplification of coincident spikes.

white noise coverage

2 items

Seminar2
Domain spotlight

Explore how white noise research is advancing inside Neuro.

Visit domain