← Back

Data Analysis

Topic spotlight
TopicOpen Source

data analysis

Discover seminars, jobs, and research tagged with data analysis across Open Source.
6 curated items6 Seminars
Updated about 1 year ago
6 items · data analysis

Latest

6 results
SeminarOpen SourceRecording

Towards open meta-research in neuroimaging

Kendra Oudyk
ORIGAMI - Neural data science - https://neurodatascience.github.io/
Dec 9, 2024

When meta-research (research on research) makes an observation or points out a problem (such as a flaw in methodology), the project should be repeated later to determine whether the problem remains. For this we need meta-research that is reproducible and updatable, or living meta-research. In this talk, we introduce the concept of living meta-research, examine prequels to this idea, and point towards standards and technologies that could assist researchers in doing living meta-research. We introduce technologies like natural language processing, which can help with automation of meta-research, which in turn will make the research easier to reproduce/update. Further, we showcase our open-source litmining ecosystem, which includes pubget (for downloading full-text journal articles), labelbuddy (for manually extracting information), and pubextract (for automatically extracting information). With these tools, you can simplify the tedious data collection and information extraction steps in meta-research, and then focus on analyzing the text. We will then describe some living meta-research projects to illustrate the use of these tools. For example, we’ll show how we used GPT along with our tools to extract information about study participants. Essentially, this talk will introduce you to the concept of meta-research, some tools for doing meta-research, and some examples. Particularly, we want you to take away the fact that there are many interesting open questions in meta-research, and you can easily learn the tools to answer them. Check out our tools at https://litmining.github.io/

SeminarOpen SourceRecording

Mesmerize: A blueprint for shareable and reproducible analysis of calcium imaging data

Kushal Kolar
University of North Carolina at Chapel Hill
Apr 6, 2022

Mesmerize is a platform for the annotation and analysis of neuronal calcium imaging data. Mesmerize encompasses the entire process of calcium imaging analysis from raw data to interactive visualizations. Mesmerize allows you to create FAIR-functionally linked datasets that are easy to share. The analysis tools are applicable for a broad range of biological experiments and come with GUI interfaces that can be used without requiring a programming background.

SeminarOpen SourceRecording

CaImAn: large-scale batch and online analysis of calcium imaging data

Andrea Giovannucci
University of North Carolina at Chapel Hill
Dec 8, 2021

Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. We present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good scalability on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected and combined a corpus of manual annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons.

SeminarOpen SourceRecording

GuPPy, a Python toolbox for the analysis of fiber photometry data

Talia Lerner
Northwestern University
Nov 24, 2021

Fiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be a challenge for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is provided as a Jupyter notebook, a well-commented interactive development environment (IDE) designed to operate across platforms. GuPPy presents the user with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs produced by GuPPy can be exported into various image formats for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.

SeminarOpen SourceRecording

An open-source experimental framework for automation of cell biology experiments

Anton Nikolaev and Pavel Katunin
Department of Biomedical Sciences, University of Sheffield; ITMO University, St. Petersburg, Russia and MEL Science, London UK
Apr 2, 2021

Modern biological methods often require a large number of experiments to be conducted. For example, dissecting molecular pathways involved in a variety of biological processes in neurons and non-excitable cells requires high-throughput compound library or RNAi screens. Another example requiring large datasets - modern data analysis methods such as deep learning. These have been successfully applied to a number of biological and medical questions. In this talk we will describe an open-source platform allowing such experiments to be automated. The platform consists of an XY stage, perfusion system and an epifluorescent microscope with autofocusing. It is extremely easy to build and can be used for different experimental paradigms, ranging from immunolabeling and routine characterisation of large numbers of cell lines to high-throughput imaging of fluorescent reporters.

data analysis coverage

6 items

Seminar6
Domain spotlight

Explore how data analysis research is advancing inside Open Source.

Visit domain