TopicOpen Source

flexibility

Latest

SeminarOpen Source

Scaling Up Bioimaging with Microfluidic Chips

Tobias Wenzel
Institute for Biological and Medical Engineering (IIBM), Pontificia Universidad Católica de Chile.
Sep 5, 2025

Explore how microfluidic chips can enhance your imaging experiments by increasing control, throughput, or flexibility. In this remote, personalized workshop, participants will receive expert guidance, support and chips to run tests on their own microscopes.

SeminarOpen SourceRecording

PiSpy: An Affordable, Accessible, and Flexible Imaging Platform for the Automated Observation of Organismal Biology and Behavior

Gregory Pask and Benjamin Morris
Middlebury College
Apr 20, 2022

A great deal of understanding can be gleaned from direct observation of organismal growth, development, and behavior. However, direct observation can be time consuming and influence the organism through unintentional stimuli. Additionally, video capturing equipment can often be prohibitively expensive, difficult to modify to one’s specific needs, and may come with unnecessary features. Here, we describe the PiSpy, a low-cost, automated video acquisition platform that uses a Raspberry Pi computer and camera to record video or images at specified time intervals or when externally triggered. All settings and controls, such as programmable light cycling, are accessible to users with no programming experience through an easy-to-use graphical user interface. Importantly, the entire PiSpy system can be assembled for less than $100 using laser-cut and 3D-printed components. We demonstrate the broad applications and flexibility of the PiSpy across a range of model and non-model organisms. Designs, instructions, and code can be accessed through an online repository, where a global community of PiSpy users can also contribute their own unique customizations and help grow the community of open-source research solutions.

SeminarOpen SourceRecording

SimBA for Behavioral Neuroscientists

Sam A. Golden
University of Washington, Department of Biological Structure
Jul 16, 2021

Several excellent computational frameworks exist that enable high-throughput and consistent tracking of freely moving unmarked animals. SimBA introduce and distribute a plug-and play pipeline that enables users to use these pose-estimation approaches in combination with behavioral annotation for the generation of supervised machine-learning behavioral predictive classifiers. SimBA was developed for the analysis of complex social behaviors, but includes the flexibility for users to generate predictive classifiers across other behavioral modalities with minimal effort and no specialized computational background. SimBA has a variety of extended functions for large scale batch video pre-processing, generating descriptive statistics from movement features, and interactive modules for user-defined regions of interest and visualizing classification probabilities and movement patterns.

flexibility coverage

3 items

Seminar3

Share your knowledge

Know something about flexibility? Help the community by contributing seminars, talks, or research.

Contribute content
Domain spotlight

Explore how flexibility research is advancing inside Open Source.

Visit domain

Cookies

We use essential cookies to run the site. Analytics cookies are optional and help us improve World Wide. Learn more.