Modeling
Latest
Computational Imaging: Augmenting Optics with Algorithms for Biomedical Microscopy and Neural Imaging
Computational imaging seeks to achieve novel capabilities and overcome conventional limitations by combining optics and algorithms. In this seminar, I will discuss two computational imaging technologies developed in Boston University Computational Imaging Systems lab, including Intensity Diffraction Tomography and Computational Miniature Mesoscope. In our intensity diffraction tomography system, we demonstrate 3D quantitative phase imaging on a simple LED array microscope. We develop both single-scattering and multiple-scattering models to image complex biological samples. In our Computational Miniature Mesoscope, we demonstrate single-shot 3D high-resolution fluorescence imaging across a wide field-of-view in a miniaturized platform. We develop methods to characterize 3D spatially varying aberrations and physical simulator-based deep learning strategies to achieve fast and accurate reconstructions. Broadly, I will discuss how synergies between novel optical instrumentation, physical modeling, and model- and learning-based computational algorithms can push the limits in biomedical microscopy and neural imaging.
A macaque connectome for simulating large-scale network dynamics in The VirtualBrain
TheVirtualBrain (TVB; thevirtualbrain.org) is a software platform for simulating whole-brain network dynamics. TVB models link biophysical parameters at the cellular level with systems-level functional neuroimaging signals. Data available from animal models can provide vital constraints for the linkage across spatial and temporal scales. I will describe the construction of a macaque cortical connectome as an initial step towards a comprehensive multi-scale macaque TVB model. I will also describe our process of validating the connectome and show an example simulation of macaque resting-state dynamics using TVB. This connectome opens the opportunity for the addition of other available data from the macaque, such as electrophysiological recordings and receptor distributions, to inform multi-scale models of brain dynamics. Future work will include extensions to neurological conditions and other nonhuman primate species.
Modeling coverage
2 items