throughput
Latest
Scaling Up Bioimaging with Microfluidic Chips
Explore how microfluidic chips can enhance your imaging experiments by increasing control, throughput, or flexibility. In this remote, personalized workshop, participants will receive expert guidance, support and chips to run tests on their own microscopes.
SimBA for Behavioral Neuroscientists
Several excellent computational frameworks exist that enable high-throughput and consistent tracking of freely moving unmarked animals. SimBA introduce and distribute a plug-and play pipeline that enables users to use these pose-estimation approaches in combination with behavioral annotation for the generation of supervised machine-learning behavioral predictive classifiers. SimBA was developed for the analysis of complex social behaviors, but includes the flexibility for users to generate predictive classifiers across other behavioral modalities with minimal effort and no specialized computational background. SimBA has a variety of extended functions for large scale batch video pre-processing, generating descriptive statistics from movement features, and interactive modules for user-defined regions of interest and visualizing classification probabilities and movement patterns.
Mobilefuge: A low-cost, portable, open source, 3D-printed centrifuge that can be used for purification of saliva samples for SARS-CoV2 detection
We made a low-cost centrifuge that can be useful for carrying out low-cost LAMP based detection of SARS-Cov2 virus in saliva. The 3D printed centrifuge (Mobilefuge) is portable, robust, stable, safe, easy to build and operate. The Mobilefuge doesn’t require soldering or programming skills and can be built without any specialised equipment, yet practical enough for high throughput use. More importantly, Mobilefuge can be powered from widely available USB ports, including mobile phones and associated power supplies. This allows the Mobilefuge to be used even in off-grid and resource limited settings. Website: https://www.cappa.ie/chinna-devarapu/
An open-source experimental framework for automation of cell biology experiments
Modern biological methods often require a large number of experiments to be conducted. For example, dissecting molecular pathways involved in a variety of biological processes in neurons and non-excitable cells requires high-throughput compound library or RNAi screens. Another example requiring large datasets - modern data analysis methods such as deep learning. These have been successfully applied to a number of biological and medical questions. In this talk we will describe an open-source platform allowing such experiments to be automated. The platform consists of an XY stage, perfusion system and an epifluorescent microscope with autofocusing. It is extremely easy to build and can be used for different experimental paradigms, ranging from immunolabeling and routine characterisation of large numbers of cell lines to high-throughput imaging of fluorescent reporters.
throughput coverage
4 items