← Back

Cell Biology

Topic spotlight
TopicPhysics of Life

cell biology

Discover seminars, jobs, and research tagged with cell biology across Physics of Life.
4 curated items4 Seminars
Updated about 5 years ago
4 items · cell biology

Latest

4 results
SeminarPhysics of Life

“Understanding the Function and Dynamics of Organelles through Imaging”

Jennifer Lippincott-Schwartz
Janelia Research Campus, Howard Hughes Medical Institute
Nov 17, 2020

Powerful new ways to image the internal structures and complex dynamics of cells are revolutionizing cell biology and bio-medical research. In this talk, I will focus on how emerging fluorescent technologies are increasing spatio-temporal resolution dramatically, permitting simultaneous multispectral imaging of multiple cellular components. In addition, results will be discussed from whole cell milling using Focused Ion Beam Electron Microscopy (FIB-SEM), which reconstructs the entire cell volume at 4 voxel resolution. Using these tools, it is now possible to begin constructing an “organelle interactome”, describing the interrelationships of different cellular organelles as they carry out critical functions. The same tools are also revealing new properties of organelles and their trafficking pathways, and how disruptions of their normal functions due to genetic mutations may contribute to important diseases.

SeminarPhysics of LifeRecording

Is there universality in biology?

Nigel Goldenfeld
Massachusetts General Hospital and Brigham & Women's Hospital
Oct 30, 2020

It is sometimes said that there are two reasons why physics is so successful as a science. One is that it deals with very simple problems. The other is that it attempts to account only for universal aspects of systems at a desired level of description, with lower level phenomena subsumed into a small number of adjustable parameters. It is a widespread belief that this approach seems unlikely to be useful in biology, which is intimidatingly complex, where “everything has an exception”, and where there are a huge number of undetermined parameters. I will try to argue, nonetheless, that there are important, experimentally-testable aspects of biology that exhibit universality, and should be amenable to being tackled from a physics perspective. My suggestion is that this can lead to useful new insights into the existence and universal characteristics of living systems. I will try to justify this point of view by contrasting the goals and practices of the field of condensed matter physics with materials science, and then by extension, the goals and practices of the newly emerging field of “Physics of Living Systems” with biology. Specific biological examples that I will discuss include the following: Universal patterns of gene expression in cell biology Universal scaling laws in ecosystems, including the species-area law, Kleiber’s law, Paradox of the Plankton Universality of the genetic code Universality of thermodynamic utilization in microbial communities Universal scaling laws in the tree of life The question of what can be learned from studying universal phenomena in biology will also be discussed. Universal phenomena, by their very nature, shed little light on detailed microscopic levels of description. Yet there is no point in seeking idiosyncratic mechanistic explanations for phenomena whose explanation is found in rather general principles, such as the central limit theorem, that every microscopic mechanism is constrained to obey. Thus, physical perspectives may be better suited to answering certain questions such as universality than traditional biological perspectives. Concomitantly, it must be recognized that the identification and understanding of universal phenomena may not be a good answer to questions that have traditionally occupied biological scientists. Lastly, I plan to talk about what is perhaps the central question of universality in biology: why does the phenomenon of life occur at all? Is it an inevitable consequence of the laws of physics or some special geochemical accident? What methodology could even begin to answer this question? I will try to explain why traditional approaches to biology do not aim to answer this question, by comparing with our understanding of superconductivity as a physical phenomenon, and with the theory of universal computation. References Nigel Goldenfeld, Tommaso Biancalani, Farshid Jafarpour. Universal biology and the statistical mechanics of early life. Phil. Trans. R. Soc. A 375, 20160341 (14 pages) (2017). Nigel Goldenfeld and Carl R. Woese. Life is Physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Cond. Matt. Phys. 2, 375-399 (2011).

SeminarPhysics of LifeRecording

On being the right size: Is the search for underlying physical principles a wild-goose chase?

Workshop, Multiple Speakers
Emory University
Oct 29, 2020

When was the last time you ran into a giant? Chances are never. Almost 100 years ago, JBS Haldane posed an outwardly simple yet complex question – what is the most optimal size (for a biological system)? The living world around us contains a huge diversity of organisms, each with its own characteristic size. Even the size of subcellular organelles is tightly controlled. In absence of physical rulers, how do cells and organisms truly “know” how large is large enough? What are the mechanisms in place to enforce size control? Many of these questions have motivated generations of scientists to look for physical principles underlying size control in biological systems. In the next edition of Emory's Theory and Modeling of Living Systems (TMLS) workshop series, our panel of speakers will take a close look at these questions, across the entire scale - from the molecular, all the way to the ecosystem.

SeminarPhysics of Life

Keynote talk: Imaging Interacting Organelles to Understand Metabolic Homeostasis

Jennifer Lippincott-Schwartz
HHMI Janelia Research Campus – Leesburg VA – USA
Jul 29, 2020

Powerful new ways to image the internal structures and complex dynamics of cells are revolutionizing cell biology and bio-medical research. In this talk, I will focus on how emerging fluorescent technologies are increasing spatio-temporal resolution dramatically, permitting simultaneous multispectral imaging of multiple cellular components. In addition, results will be discussed from whole cell milling using Focused Ion Beam Electron Microscopy (FIB-SEM), which reconstructs the entire cell volume at 4 voxel resolution. Using these tools, it is now possible to begin constructing an “organelle interactome”, describing the interrelationships of different cellular organelles as they carry out critical functions. The same tools are also revealing new properties of organelles and their trafficking pathways, and how disruptions of their normal functions due to genetic mutations may contribute to important diseases.

cell biology coverage

4 items

Seminar4
Domain spotlight

Explore how cell biology research is advancing inside Physics of Life.

Visit domain