computational framework
Latest
Coordinated motion of active filaments on spherical surfaces
Filaments (slender, microscopic elastic bodies) are prevalent in biological and industrial settings. In the biological case, the filaments are often active, in that they are driven internally by motor proteins, with the prime examples being cilia and flagella. For cilia in particular, which can appear in dense arrays, their resulting motions are coupled through the surrounding fluid, as well as through surfaces to which they are attached. In this talk, I present numerical simulations exploring the coordinated motion of active filaments and how it depends on the driving force, density of filaments, as well as the attached surface. In particular, we find that when the surface is spherical, its topology introduces local defects in coordinated motion which can then feedback and alter the global state. This is particularly true when the surface is not held fixed and is free to move in the surrounding fluid. These simulations take advantage of a computational framework we developed for fully 3D filament motion that combines unit quaternions, implicit geometric time integration, quasi-Newton methods, and fast, matrix-free methods for hydrodynamic interactions and it will also be presented.
Building a synthetic cell: Understanding the clock design and function
Clock networks containing the same central architectures may vary drastically in their potential to oscillate, raising the question of what controls robustness, one of the essential functions of an oscillator. We computationally generate an atlas of oscillators and found that, while core topologies are critical for oscillations, local structures substantially modulate the degree of robustness. Strikingly, two local structures, incoherent and coherent inputs, can modify a core topology to promote and attenuate its robustness, additively. The findings underscore the importance of local modifications to the performance of the whole network. It may explain why auxiliary structures not required for oscillations are evolutionary conserved. We also extend this computational framework to search hidden network motifs for other clock functions, such as tunability that relates to the capabilities of a clock to adjust timing to external cues. Experimentally, we developed an artificial cell system in water-in-oil microemulsions, within which we reconstitute mitotic cell cycles that can perform self-sustained oscillations for 30 to 40 cycles over multiple days. The oscillation profiles, such as period, amplitude, and shape, can be quantitatively varied with the concentrations of clock regulators, energy levels, droplet sizes, and circuit design. Such innate flexibility makes it crucial to studying clock functions of tunability and stochasticity at the single-cell level. Combined with a pressure-driven multi-channel tuning setup and long-term time-lapse fluorescence microscopy, this system enables a high-throughput exploration in multi-dimension continuous parameter space and single-cell analysis of the clock dynamics and functions. We integrate this experimental platform with mathematical modeling to elucidate the topology-function relation of biological clocks. With FRET and optogenetics, we also investigate spatiotemporal cell-cycle dynamics in both homogeneous and heterogeneous microenvironments by reconstructing subcellular compartments.
“Models for Liquid-liquid Phase Separation of Intrinsically Disordered Proteins”
Intrinsically disordered proteins (IDPs), lack of a well-defined folded structure, have been recently shown to be critical to forming membrane-less organelles via liquid-liquid phase separation (LLPS). Due to the flexible conformations of IDPs, it could be challenging to investigate IDPs with solely experimental techniques. Computational models can therefore provide complementary views at several aspects, including the fundamental physics underlying LLPS and the sequence determinants contributing to LLPS. In this presentation, I will start with our coarse-grained computational framework that can help generate sequence dependent phase diagrams. The coarse-grained model further led to the development of a polymer model with empirical parameters to quickly predict LLPS of IDPs. At last, I will show our preliminary efforts on addressing molecular interactions within LLPS of IDPs using all-atom explicit-solvent simulations.
Flow, fluctuate and freeze: Epithelial cell sheets as soft active matter
Epithelial cell sheets form a fundamental role in the developing embryo, and also in adult tissues including the gut and the cornea of the eye. Soft and active matter provides a theoretical and computational framework to understand the mechanics and dynamics of these tissues.I will start by introducing the simplest useful class of models, active brownian particles (ABPs), which incorporate uncoordinated active crawling over a substrate and mechanical interactions. Using this model, I will show how the extended ’swirly’ velocity fluctuations seen in sheets on a substrate can be understood using a simple model that couples linear elasticity with disordered activity. We are able to quantitatively match experiments using in-vitro corneal epithelial cells.Adding a different source of activity, cell division and apoptosis, to such a model leads to a novel 'self-melting' dense fluid state. Finally, I will discuss a direct application of this simple particle-based model to the steady-state spiral flow pattern on the mouse cornea.
computational framework coverage
4 items
Explore how computational framework research is advancing inside Physics of Life.
Visit domain