Latest

SeminarPhysics of LifeRecording

Towards a Theory of Microbial Ecosystems

Pankaj Mehta
Boston University
Dec 10, 2021

A major unresolved question in microbiome research is whether the complex ecological patterns observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly and a lack of theoretical tools for modeling diverse ecosystems. Here, I will present a simple ecological model of microbial communities that reproduces large-scale ecological patterns observed across multiple natural and experimental settings including compositional gradients, clustering by environment, diversity/harshness correlations, and nestedness. Surprisingly, our model works despite having a “random metabolisms” and “random consumer preferences”. This raises the natural of question of why random ecosystems can describe real-world experimental data. In the second, more theoretical part of the talk, I will answer this question by showing that when a community becomes diverse enough, it will always self-organize into a stable state whose properties are well captured by a “typical random ecosystems”.

SeminarPhysics of LifeRecording

Exploring the evolution of motile curved bacteria using a regularized Stokeslet Boundary Element Method and Pareto optimality theory

Rudi Schuech
Tulane University
Feb 17, 2021

Bacteria exhibit a bewildering diversity of morphologies, but despite their impact on nearly all aspects of life, they are frequently classified into a few general categories, usually just “spheres” and “rods.” Curved-rod bacteria are one simple variation observed in many environments, particularly the ocean. However, why so many species have evolved this shape is unknown. We used a regularized Stokeslet Boundary Element Method to model the motility of flagellated, curved bacteria. We show that curvature can increase swimming efficiency, revealing a widely applicable selective advantage. Furthermore, we show that the distribution of cell lengths and curvatures observed across bacteria in nature is predicted by evolutionary trade-offs between three tasks influenced by shape: efficient swimming, the ability to detect chemical gradients, and reduced cost of cell construction. We therefore reveal shape as an important component of microbial fitness.

SeminarPhysics of LifeRecording

On being the right size: Is the search for underlying physical principles a wild-goose chase?

Workshop, Multiple Speakers
Emory University
Oct 29, 2020

When was the last time you ran into a giant? Chances are never. Almost 100 years ago, JBS Haldane posed an outwardly simple yet complex question – what is the most optimal size (for a biological system)? The living world around us contains a huge diversity of organisms, each with its own characteristic size. Even the size of subcellular organelles is tightly controlled. In absence of physical rulers, how do cells and organisms truly “know” how large is large enough? What are the mechanisms in place to enforce size control? Many of these questions have motivated generations of scientists to look for physical principles underlying size control in biological systems. In the next edition of Emory's Theory and Modeling of Living Systems (TMLS) workshop series, our panel of speakers will take a close look at these questions, across the entire scale - from the molecular, all the way to the ecosystem.

SeminarPhysics of LifeRecording

Soft Capricious Matter: The collective behavior of particles with “noisy” interactions

Bulbul Chakraborty
Brandeis University
Oct 21, 2020

Diversity in the natural world emerges from the collective behavior of large numbers of interacting objects. Statistical physics provides the framework relating microscopic to macroscopic properties. A fundamental assumption underlying this approach is that we have complete knowledge of the interactions between the microscopic entities. But what if that, even though possible in principle becomes impossible in practice ? Can we still construct a framework for describing their collective behavior ? Dense suspensions and granular materials are two often quoted examples where we face this challenge. These are systems where because of the complicated surface properties of particles there is extreme sensitivity of the interactions to particle positions. In this talk, I will present a perspective based on notions of constraint satisfaction that provides a way forward. I will focus on our recent work on the emergence of elasticity in the absence of any broken symmetry, and sketch out other problems that can be addressed using this perspective.

SeminarPhysics of LifeRecording

Can we predict the diversity of real populations? Part I: What is linked selection doing to populations?

Workshop, Multiple Speakers: Christelle Fraïsse (IST Austria/CNRS), Derek Setter (U Edinburgh), Kim Gilbert (U Lausanne/U Bern), Ivana Cvijovic (Stanford U)
Emory University
Aug 18, 2020

Natural selection affects not only selected alleles, but also indirectly affects all genes near selected sites on the genome. An increasing body of evidence suggests that this linked selection is an important driver of evolutionary dynamics throughout the genomes of many species, implying that we need to substantially revise our basic understanding of molecular evolution. This session brings together early-career researchers working towards a quantitative understanding of the prevalence and effects of linked selection.

SeminarPhysics of LifeRecording

Physics of Behavior: Now that we can track (most) everything, what can we do with the data?

Workshop, Multiple Speakers
Emory University
Apr 30, 2020

We will organize the workshop around one question: “Now that we can track (most) everything, what can we do with the data?” Given the recent dramatic advances in technology, we now have behavioral data sets with orders of magnitude more accuracy, dimensionality, diversity, and size than we had even a few years ago. That being said, there is still little agreement as to what theoretical frameworks can inform our understanding of these data sets and suggest new experiments we can perform. We hope that after this workshop we’ll see a variety of new ideas and perhaps gain some inspiration. We have invited eight speakers, each studying different systems, scales, and topics, to provide 10 minute presentations focused on the above question, with another 10 minutes set aside for questions/discussions (moderated by the two of us). Although we naturally expect speakers to include aspects of their own work, we have encouraged all of them to think broadly and provocatively. We are also hoping to organize some breakout sessions after the talks so that we can have some more expanded discussions about topics arising during the meeting.

diversity coverage

7 items

Seminar7
Domain spotlight

Explore how diversity research is advancing inside Physics of Life.

Visit domain