← Back

Enzymes

Topic spotlight
TopicPhysics of Life

enzymes

Discover seminars, jobs, and research tagged with enzymes across Physics of Life.
2 curated items2 Seminars
Updated over 4 years ago
2 items · enzymes

Latest

2 results
SeminarPhysics of LifeRecording

Liquid-liquid phase separation out of equilibrium

Alexandra Tayar
UCSB
Apr 26, 2021

Living cells contain millions of enzymes and proteins, which carry out multiple reactions simultaneously. To optimize these processes, cells compartmentalize reactions in membraneless liquid condensates. Certain features of cellular condensates can be explained by principles of liquid-liquid phase separation studied in material science. However, biological condensates exist in the inherently out of equilibrium environment of a living cell, being driven by force-generating microscopic processes. These cellular conditions are fundamentally different than the equilibrium conditions of liquid-liquid phase separation studied in materials science and physics. How condensates function in the active riotous environment of a cell is essential for understanding of cellular functions, as well as to the onset of neurodegenerative diseases. Currently, we lack model systems that enable rigorous studies of these processes. Living cells are too complex for quantitative analysis, while reconstituted equilibrium condensates fail to capture the non-equilibrium environment of biological cells. To bridge this gap, we reconstituted a DNA based membraneless condensates in an active environment that mimics the conditions of a living cell. We combine condensates with a reconstituted network of cytoskeletal filaments and molecular motors, and study how the mechanical interactions change the phase behavior and dynamics of membraneless structures. Studying these composite materials elucidates the fundamental physics rules that govern the behavior of liquid-liquid phase separation away from equilibrium while providing insight into the mechanism of condensate phase separation in cellular environments.

SeminarPhysics of LifeRecording

Self-organization of chemically active colloids with non-reciprocal interactions

Ramin Golestanian
Max Planck Institute
Apr 7, 2021

Cells and microorganisms produce and consume all sorts of chemicals, from nutrients to signalling molecules. The same happens at the nanoscale inside cells themselves, where enzymes catalyse the production and consumption of the chemicals needed for life. In this work, we have found a generic mechanism by which such chemically-active particles, be it cells or enzymes or engineered synthetic colloids, can "sense" each other and ultimately self- organize in a multitude of ways. A peculiarity of these chemical-mediated interactions is that they break action-reaction symmetry : for example, one particle may be repelled from a second particle, which is in turn attracted to the first one, so that it ends up "chasing" it. Such chasing interactions allow for the formation of large clusters of particles that "swim" autonomously. Regarding enzymes, we find that they can spontaneously aggregate into clusters with precisely the right composition, so that the product of one enzyme is passed on, without lack or excess, to the next enzyme in the metabolic cascade.

enzymes coverage

2 items

Seminar2
Domain spotlight

Explore how enzymes research is advancing inside Physics of Life.

Visit domain