Latest

SeminarPhysics of LifeRecording

Growing in flows: from evolutionary dynamics to microbial jets

Severine Atis
University of Chicago
Sep 27, 2021

Biological systems can self-organize in complex structures, able to evolve and adapt to widely varying environmental conditions. Despite the importance of fluid flow for transporting and organizing populations, few laboratory systems exist to systematically investigate the impact of advection on their spatial evolutionary dynamics. In this talk, I will discuss how we can address this problem by studying the morphology and genetic spatial structure of microbial colonies growing on the surface of a viscous substrate. When grown on a liquid, I will show that S. cerevisiae (baker’s yeast) can behave like “active matter” and collectively generate a fluid flow many times larger than the unperturbed colony expansion speed, which in turn produces mechanical stresses and fragmentation of the initial colony. Combining laboratory experiments with numerical modeling, I will demonstrate that the coupling between metabolic activity and hydrodynamic flows can produce positive feedbacks and drive preferential growth phenomena leading to the formation of microbial jets. Our work provides rich opportunities to explore the interplay between hydrodynamics, growth and competition within a versatile system.

SeminarPhysics of Life

Evolutionary Dynamics

Richard Neher, Oskar Hallatschek, Ivana Cvijović
CUNY/ITS, CUNY/Princeton Center for Physics of Biological Function
Oct 9, 2020

evolutionary dynamics coverage

3 items

Seminar3
Domain spotlight

Explore how evolutionary dynamics research is advancing inside Physics of Life.

Visit domain