genome
Latest
4D Chromosome Organization: Combining Polymer Physics, Knot Theory and High Performance Computing
Self-organization is a universal concept spanning numerous disciplines including mathematics, physics and biology. Chromosomes are self-organizing polymers that fold into orderly, hierarchical and yet dynamic structures. In the past decade, advances in experimental biology have provided a means to reveal information about chromosome connectivity, allowing us to directly use this information from experiments to generate 3D models of individual genes, chromosomes and even genomes. In this talk I will present a novel data-driven modeling approach and discuss a number of possibilities that this method holds. I will discuss a detailed study of the time-evolution of X chromosome inactivation, highlighting both global and local properties of chromosomes that result in topology-driven dynamical arrest and present and characterize a novel type of motion we discovered in knots that may have applications to nanoscale materials and machines.
How polymer-loop-extruding motors shape chromosomes
Chromosomes are extremely long, active polymers that are spatially organized across multiple scales to promote cellular functions, such as gene transcription and genetic inheritance. During each cell cycle, chromosomes are dramatically compacted as cells divide and dynamically reorganized into less compact, spatiotemporally patterned structures after cell division. These activities are facilitated by DNA/chromatin-binding protein motors called SMC complexes. Each of these motors can perform a unique activity known as “loop extrusion,” in which the motor binds the DNA/chromatin polymer, reels in the polymer fiber, and extrudes it as a loop. Using simulations and theory, I show how loop-extruding motors can collectively compact and spatially organize chromosomes in different scenarios. First, I show that loop-extruding complexes can generate sufficient compaction for cell division, provided that loop-extrusion satisfies stringent physical requirements. Second, while loop-extrusion alone does not uniquely spatially pattern the genome, interactions between SMC complexes and protein “boundary elements” can generate patterns that emerge in the genome after cell division. Intriguingly, these “boundary elements” are not necessarily stationary, which can generate a variety of patterns in the neighborhood of transcriptionally active genes. These predictions, along with supporting experiments, show how SMC complexes and other molecular machinery, such as RNA polymerase, can spatially organize the genome. More generally, this work demonstrates both the versatility of the loop extrusion mechanism for chromosome functional organization and how seemingly subtle microscopic effects can emerge in the spatiotemporal structure of nonequilibrium polymers.
Spatio-temporal control over near critical-point operation ensures fidelity of bacterial genome partition
Energy landscapes, order and disorder, and protein sequence coevolution: From proteins to chromosome structure
In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. A theoretical model for chromatin (the minimal chromatin model) explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data is presented. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. This model was generalized by utilizing a neural network to infer these chromatin types using epigenetic marks present at a locus, as assayed by ChIP-Seq. The ensemble of structures resulting from these simulations completely agree with HI-C data and exhibits unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories. Although this theoretical methodology was trained in one cell line, the human GM12878 lymphoblastoid cells, it has successfully predicted the structural ensembles of multiple human cell lines. Finally, going beyond Hi-C, our predicted structures are also consistent with microscopy measurements. Analysis of both structures from simulation and microscopy reveals that short segments of chromatin make two-state transitions between closed conformations and open dumbbell conformations. For gene active segments, the vast majority of genes appear clustered in the linker region of the chromatin segment, allowing us to speculate possible mechanisms by which chromatin structure and dynamics may be involved in controlling gene expression. * Supported by the NSF
Anatomical decision-making by cellular collectives: bioelectrical pattern memories, regeneration, and synthetic living organisms
A key question for basic biology and regenerative medicine concerns the way in which evolution exploits physics toward adaptive form and function. While genomes specify the molecular hardware of cells, what algorithms enable cellular collectives to reliably build specific, complex, target morphologies? Our lab studies the way in which all cells, not just neurons, communicate as electrical networks that enable scaling of single-cell properties into collective intelligences that solve problems in anatomical feature space. By learning to read, interpret, and write bioelectrical information in vivo, we have identified some novel controls of growth and form that enable incredible plasticity and robustness in anatomical homeostasis. In this talk, I will describe the fundamental knowledge gaps with respect to anatomical plasticity and pattern control beyond emergence, and discuss our efforts to understand large-scale morphological control circuits. I will show examples in embryogenesis, regeneration, cancer, and synthetic living machines. I will also discuss the implications of this work for not only regenerative medicine, but also for fundamental understanding of the origin of bodyplans and the relationship between genomes and functional anatomy.
Cell Size and Zygotic Genome Activation
Finding Needles in Genomic Haystacks
The ability to read the DNA sequences of different organisms has transformed biology in much the same way that the telescope transformed astronomy. And yet, much of the sequence found in these genomes is as enigmatic as the Rosetta Stone was to early Egyptologists. With the aim of making steps to crack the genomic Rosetta Stone, I will describe unexpected ways of using the physics of information transfer first developed at Bell Labs for thinking about telephone communications to try to decipher the meaning of the regulatory features of genomes. Specifically, I will show how we have been able to explore genes for which we know nothing about how they are regulated by using a combination of mutagenesis, deep sequencing and the physics of information, with the result that we now have falsifiable hypotheses about how those genes work. With those results in hand, I will show how simple tools from statistical physics can be used to predict the level of expression of different genes, followed by a description of precision measurements used to test those predictions. Bringing the two threads of the talk together, I will think about next steps in reading and writing genomes at will.
Can we predict the diversity of real populations? Part I: What is linked selection doing to populations?
Natural selection affects not only selected alleles, but also indirectly affects all genes near selected sites on the genome. An increasing body of evidence suggests that this linked selection is an important driver of evolutionary dynamics throughout the genomes of many species, implying that we need to substantially revise our basic understanding of molecular evolution. This session brings together early-career researchers working towards a quantitative understanding of the prevalence and effects of linked selection.
genome coverage
8 items