methodology
Latest
Energy landscapes, order and disorder, and protein sequence coevolution: From proteins to chromosome structure
In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. A theoretical model for chromatin (the minimal chromatin model) explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data is presented. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. This model was generalized by utilizing a neural network to infer these chromatin types using epigenetic marks present at a locus, as assayed by ChIP-Seq. The ensemble of structures resulting from these simulations completely agree with HI-C data and exhibits unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories. Although this theoretical methodology was trained in one cell line, the human GM12878 lymphoblastoid cells, it has successfully predicted the structural ensembles of multiple human cell lines. Finally, going beyond Hi-C, our predicted structures are also consistent with microscopy measurements. Analysis of both structures from simulation and microscopy reveals that short segments of chromatin make two-state transitions between closed conformations and open dumbbell conformations. For gene active segments, the vast majority of genes appear clustered in the linker region of the chromatin segment, allowing us to speculate possible mechanisms by which chromatin structure and dynamics may be involved in controlling gene expression. * Supported by the NSF
Free-falling dynamically scaled models: Foraminifera as a test case
The settling speeds of small biological particles influence the distribution of organisms such as plants, corals, and phytoplankton, but these speeds are difficult to quantify without magnification. In this talk, I highlight my novel method, using dynamic scaling principles and 3D printed models to solve this problem. Dynamic scaling involves creating models with differ in size to the original system and match the physical forces acting upon the model to the original system. I discuss the methodology behind the technique and show how it differs to previous works using dynamically scaled models. I show the flexibility of the technique and suggest how it can be applied to other free-falling particles (e.g. seeds and spores).
Holographic control of neuronal circuits
Genetic targeting of neuronal cells with activity reporters (calcium or voltage indicators) has initiated the paradigmatic transition whereby photons have replaced electrons for reading large-scale brain activities at cellular resolution. This has alleviated the limitations of single cell or extracellular electrophysiological probing, which only give access to the activity of at best a few neurons simultaneously and to population activity of unresolved cellular origin, respectively. In parallel, optogenetics has demonstrated that targeting neuronal cells with photosensitive microbial opsins, enables the transduction of photons into electrical currents of opposite polarities thus writing, through activation or inhibition, neuronal signals in a non-invasive way. These progresses have in turn stimulated the development of sophisticated optical methods to increase spatial and temporal resolution, light penetration depth and imaging volume. Today, nonlinear microscopy, combined with spatio-temporal wave front shaping, endoscopic probes engineering or multi scan heads design, enable in vivo in depth, simultaneous recording of thousands of cells in mm 3 volumes at single-spike precision and single-cell resolution. Joint progress in opsin engineering, wave front shaping and laser development have provided the methodology, that we named circuits optogenetics, to control single or multiple target activity independently in space and time with single- neuron and single-spike precision, at large depths. Here, we will review the most significant breakthroughs of the past years, which enable reading and writing neuronal activity at the relevant spatiotemporal scale for brain circuits manipulation, with particular emphasis on the most recent advances in circuit optogenetics.
Is there universality in biology?
It is sometimes said that there are two reasons why physics is so successful as a science. One is that it deals with very simple problems. The other is that it attempts to account only for universal aspects of systems at a desired level of description, with lower level phenomena subsumed into a small number of adjustable parameters. It is a widespread belief that this approach seems unlikely to be useful in biology, which is intimidatingly complex, where “everything has an exception”, and where there are a huge number of undetermined parameters. I will try to argue, nonetheless, that there are important, experimentally-testable aspects of biology that exhibit universality, and should be amenable to being tackled from a physics perspective. My suggestion is that this can lead to useful new insights into the existence and universal characteristics of living systems. I will try to justify this point of view by contrasting the goals and practices of the field of condensed matter physics with materials science, and then by extension, the goals and practices of the newly emerging field of “Physics of Living Systems” with biology. Specific biological examples that I will discuss include the following: Universal patterns of gene expression in cell biology Universal scaling laws in ecosystems, including the species-area law, Kleiber’s law, Paradox of the Plankton Universality of the genetic code Universality of thermodynamic utilization in microbial communities Universal scaling laws in the tree of life The question of what can be learned from studying universal phenomena in biology will also be discussed. Universal phenomena, by their very nature, shed little light on detailed microscopic levels of description. Yet there is no point in seeking idiosyncratic mechanistic explanations for phenomena whose explanation is found in rather general principles, such as the central limit theorem, that every microscopic mechanism is constrained to obey. Thus, physical perspectives may be better suited to answering certain questions such as universality than traditional biological perspectives. Concomitantly, it must be recognized that the identification and understanding of universal phenomena may not be a good answer to questions that have traditionally occupied biological scientists. Lastly, I plan to talk about what is perhaps the central question of universality in biology: why does the phenomenon of life occur at all? Is it an inevitable consequence of the laws of physics or some special geochemical accident? What methodology could even begin to answer this question? I will try to explain why traditional approaches to biology do not aim to answer this question, by comparing with our understanding of superconductivity as a physical phenomenon, and with the theory of universal computation. References Nigel Goldenfeld, Tommaso Biancalani, Farshid Jafarpour. Universal biology and the statistical mechanics of early life. Phil. Trans. R. Soc. A 375, 20160341 (14 pages) (2017). Nigel Goldenfeld and Carl R. Woese. Life is Physics: evolution as a collective phenomenon far from equilibrium. Ann. Rev. Cond. Matt. Phys. 2, 375-399 (2011).
methodology coverage
4 items