World Wide
SeminarsConferencesWorkshopsCoursesJobsMapsFeedLibrary
TopicPhysics of Life

microbial fitness

1 Seminar
Explore Physics of LifeBrowse all domains
Explore Physics of LifeBrowse all domains

Latest

SeminarPhysics of LifeRecording

Exploring the evolution of motile curved bacteria using a regularized Stokeslet Boundary Element Method and Pareto optimality theory

Rudi Schuech
Tulane University
Feb 17, 2021

Bacteria exhibit a bewildering diversity of morphologies, but despite their impact on nearly all aspects of life, they are frequently classified into a few general categories, usually just “spheres” and “rods.” Curved-rod bacteria are one simple variation observed in many environments, particularly the ocean. However, why so many species have evolved this shape is unknown. We used a regularized Stokeslet Boundary Element Method to model the motility of flagellated, curved bacteria. We show that curvature can increase swimming efficiency, revealing a widely applicable selective advantage. Furthermore, we show that the distribution of cell lengths and curvatures observed across bacteria in nature is predicted by evolutionary trade-offs between three tasks influenced by shape: efficient swimming, the ability to detect chemical gradients, and reduced cost of cell construction. We therefore reveal shape as an important component of microbial fitness.

microbial fitness coverage

1 items

Seminar1
Domain spotlight

Explore how microbial fitness research is advancing inside Physics of Life.

Visit domain
January 2026
Full calendar →

Platform

  • Search
  • Seminars
  • Conferences
  • Jobs

Resources

  • Submit Content
  • About Us

© 2025 World Wide

Open knowledge for all • Started with World Wide Neuro • A 501(c)(3) Non-Profit Organization

Analytics consent required

World Wide relies on analytics signals to operate securely and keep research services available. Accept to continue, or leave the site.

Review the Privacy Policy for details about analytics processing.