← Back

Patiria Miniata

Topic spotlight
TopicPhysics of Life

patiria miniata

Discover seminars, jobs, and research tagged with patiria miniata across Physics of Life.
1 curated item1 Seminar
Updated over 3 years ago
1 items · patiria miniata

Latest

1 result
SeminarPhysics of LifeRecording

Active mechanics of sea star oocytes

Peter Foster
Brandeis University
Jul 18, 2022

The cytoskeleton has the remarkable ability to self-organize into active materials which underlie diverse cellular processes ranging from motility to cell division. Actomyosin is a canonical example of an active material, which generates cellularscale contractility in part through the forces exerted by myosin motors on actin filaments. While the molecular players underlying actomyosin contractility have been well characterized, how cellular-scale deformation in disordered actomyosin networks emerges from filament-scale interactions is not well understood. In this talk, I’ll present work done in collaboration with Sebastian Fürthauer and Nikta Fakhri addressing this question in vivo using the meiotic surface contraction wave seen in oocytes of the bat star Patiria miniata as a model system. By perturbing actin polymerization, we find that the cellular deformation rate is a nonmonotonic function of cortical actin density peaked near the wild type density. To understand this, we develop an active fluid model coarse-grained from filament-scale interactions and find quantitative agreement with the measured data. The model makes further predictions, including the surprising prediction that deformation rate decreases with increasing motor concentration. We test these predictions through protein overexpression and find quantitative agreement. Taken together, this work is an important step for bridging the molecular and cellular length scales for cytoskeletal networks in vivo.

patiria miniata coverage

1 items

Seminar1
Domain spotlight

Explore how patiria miniata research is advancing inside Physics of Life.

Visit domain