Theoretical
Latest
Magnetic Handshake Materials
Biological materials gain complexity from the programmable nature of their components. To manufacture materials with comparable complexity synthetically, we need to create building blocks with low crosstalk so that they only bind to their desired partners. Canonically, these building blocks are made using DNA strands or proteins to achieve specificity. Here we propose a new materials platform, termed Magnetic Handshake Materials, in which we program interactions through designing magnetic dipole patterns. This is a completely synthetic platform, enabled by magnetic printing technology, which is easier to both model theoretically and control experimentally. In this seminar, I will give an overview of the development of the Magnetic Handshake Materials platform, ranging from interaction, assembly to function design.
Membrane mechanics meet minimal manifolds
Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes studied by the Sharma (IISc Bangalore) and Dogic (UCSB) Labs have in-plane fluid-like dynamics and out-of-plane bending elasticity, but their open edges and micron length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. First, we discuss how doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped minimal surfaces with complex edge structures. Theoretical modeling demonstrates that their formation is driven by increasing positive Gaussian modulus, which in turn is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to exotic topologically distinct structures, including shapes similar to catenoids, tri-noids, four-noids, and higher order structures. We then mathematically explore the mechanics of these catenoid-like structures subject to an external axial force and elucidate their intimate connection to two problems whose solutions date back to Euler: the shape of an area-minimizing soap film and the buckling of a slender rod under compression. A perturbation theory argument directly relates the tensions of membranes to the stability properties of minimal surfaces. We also investigate the effects of including a Gaussian curvature modulus, which, for small enough membranes, causes the axial force to diverge as the ring separation approaches its maximal value.
New prospects in shape morphing sheets: unexplored pathways, 4D printing, and autonomous actuation
Living organisms have mastered the dynamic control of stresses within sheets to induce shape transformation and locomotion. For instance, the spatiotemporal pattern of action potential in a heart yields a dynamical stress field leading to shape changes and biological function. Such structures inspired the development of theoretical tools and responsive materials alike. Yet, present attempts to mimic their rich dynamics and phenomenology in autonomous synthetic matter are still very limited. In this talk, I will present several complementing innovations toward this goal: novel shaping mechanisms that were overlooked by previous research, new fabrication techniques for programmable matter via 4D printing of gel structures, and most prominently, the first autonomous shape morphing membranes. The dynamical control over the geometry of the material is a prevalent theme in all of these achievements. In particular, the latter system demonstrates localized deformations, induced by a pattern-forming chemical reaction, that prescribe the patterns of curvature, leading to global shape evolution. Together, these developments present a route for modeling and producing fully autonomous soft membranes mimicking some of the locomotive capabilities of living organisms.
Intrinsic Rhythms in a Giant Single-Celled Organism and the Interplay with Time-Dependent Drive, Explored via Self-Organized Macroscopic Waves
Living Systems often seem to follow, in addition to external constraints and interactions, an intrinsic predictive model of the world — a defining trait of Anticipatory Systems. Here we study rhythmic behaviour in Caulerpa, a marine green alga, which appears to predict the day/night light cycle. Caulerpa consists of differentiated organs resembling leaves, stems and roots. While an individual can exceed a meter in size, it is a single multinucleated giant cell. Active transport has been hypothesized to play a key role in organismal development. It has been an open question in the literature whether rhythmic transport phenomena in this organism are of autonomous circadian nature. Using Raspberry-Pi cameras, we track over weeks the morphogenesis of tens of samples concurrently, while tracing at resolution of tens of seconds the variation of the green coverage. The latter reveals waves propagating over centimeters within few hours, and is attributed to chloroplast redistribution at whole-organism scale. Our observations of algal segments regenerating under 12-hour light/dark cycles indicate that the initiation of the waves precedes the external light change. Using time-frequency analysis, we find that the temporal spectrum of these green pulses contains a circadian period. The latter persists over days even under constant illumination, indicative of its autonomous nature. We further explore the system under non-circadian periods, to reveal how the spectral content changes in response. Time-keeping and synchronization are recurring themes in biological research at various levels of description — from subcellular components to ecological systems. We present a seemingly primitive living system that exhibits apparent anticipatory behaviour. This research offers quantitative constraints for theoretical frameworks of such systems.
Towards a Theory of Microbial Ecosystems
A major unresolved question in microbiome research is whether the complex ecological patterns observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly and a lack of theoretical tools for modeling diverse ecosystems. Here, I will present a simple ecological model of microbial communities that reproduces large-scale ecological patterns observed across multiple natural and experimental settings including compositional gradients, clustering by environment, diversity/harshness correlations, and nestedness. Surprisingly, our model works despite having a “random metabolisms” and “random consumer preferences”. This raises the natural of question of why random ecosystems can describe real-world experimental data. In the second, more theoretical part of the talk, I will answer this question by showing that when a community becomes diverse enough, it will always self-organize into a stable state whose properties are well captured by a “typical random ecosystems”.
Reconstruct cellular dynamics from single cell data
Recent advances of single cell techniques catalyzed quantitative studies on the dynamics of cell phenotypic transitions (CPT) emerging as a new field. However, fixed cell-based approaches have fundamental limits on revealing temporal information, and fluorescence-based live cell imaging approaches are technically challenging for multiplex long-term imaging. To tackle the challenges, we developed an integrated experimental/computational platform for reconstructing single cell phenotypic transition dynamics. Experimentally, we developed a live-cell imaging platform to record the phenotypic transition path of A549 VIM-RFP reporter cell line and unveil parallel paths of epithelial-to-mesenchymal transition (EMT). Computationally, we modified a finite temperature string method to reconstruct the reaction coordinate from the paths, and reconstruct a corresponding quasi-potential, which reveals that the EMT process resembles a barrier-less relaxation process. Our work demonstrates the necessity of extracting dynamical information of phenotypic transitions and the existence of a unified theoretical framework describing transition and relaxation dynamics in systems with and without detailed balance.
Mechano-adaptation in a large protein complex
Macromolecular protein complexes perform essential biological functions across life forms. A fundamental, though yet unsolved question in biology is how the function of such complexes is regulated by intracellular or extracellular signals. For instance, we have little understanding of how forces affect multi-protein machines whose function is often mechanical in nature. We address this question by studying the bacterial flagellar motor, a large complex that powers swimming motility in many bacteria. This rotary motor autonomously adapts to changes in mechanical load by adding or removing force-generating ‘stator’ units that power rotation. In the bacterium Escherichia coli, up to 11 units drive the motor at high load while all the units are released at low load. We manipulate motor load using electrorotation, a technique in which a rapidly rotating electric field applies an external torque on the motor. This allows us to change motor load at will and measure the resulting stator dynamics at single-unit resolution. We found that the force generated by the stator units controls their unbinding, forming a feedback loop that leads to autoregulation of the assembly. We complemented our experiments with theoretical models that provide insight into the underlying molecular interactions. Torque-dependent remodeling takes place within seconds, making it a highly responsive control mechanism, one that is mediated by the mechano-chemical tuning of protein interactions.
Energy landscapes, order and disorder, and protein sequence coevolution: From proteins to chromosome structure
In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. A theoretical model for chromatin (the minimal chromatin model) explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data is presented. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. This model was generalized by utilizing a neural network to infer these chromatin types using epigenetic marks present at a locus, as assayed by ChIP-Seq. The ensemble of structures resulting from these simulations completely agree with HI-C data and exhibits unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories. Although this theoretical methodology was trained in one cell line, the human GM12878 lymphoblastoid cells, it has successfully predicted the structural ensembles of multiple human cell lines. Finally, going beyond Hi-C, our predicted structures are also consistent with microscopy measurements. Analysis of both structures from simulation and microscopy reveals that short segments of chromatin make two-state transitions between closed conformations and open dumbbell conformations. For gene active segments, the vast majority of genes appear clustered in the linker region of the chromatin segment, allowing us to speculate possible mechanisms by which chromatin structure and dynamics may be involved in controlling gene expression. * Supported by the NSF
Flocks and crowds: a Gulliver travel
In the first part of my talk, combining experimental, numerical and theoretical results, I will explain how self-propelled colloidal particles self-organize in one of the most robust ordered state found in nature: flocks. I will explain how to describe macroscopic flocking motion as the spontaneous flows of an active fluid, and use this framework to elucidate the phase ordering dynamics of polar active matter. In the second part of my talk, I will show that the same tools and concepts can be effectively used to infer a hydrodynamic description of active fluids composed of particles 6 order of magnitude larger in size: pedestrian crowds.
Tissue fluidization at the onset of zebrafish gastrulation
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables at criticality. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.
Hydrodynamic shape of microorganisms: Generalised Jeffery orbits
'Shape' of microorganisms are diverse. However, we sometimes approximate them as a sphere or a spheroid when we mathematically model the hydrodynamics of motile and non-motile cells. Such a geometrical simplification can be theoretically validated for motions in a linear background flow, since the dynamics, known as the Jeffery orbit, only contain a single geometric parameter, called the Bretherton constant. In this talk, we generalise the Jeffery equations for a chiral axisymmetric object using the low-Reynolds-number hydrokinetic symmetry and then demonstrate that the dynamics of a certain type of chiral object in a fluid flow are characterised by a new chiral parameter in addition to the Bretherton constant. We also discuss how the generalised Jeffery orbits are applied to biased locomotion of bacteria in a bulk shear flow and we will share the idea of hydrodynamic `shape' of microorganisms to simplify the description of their dynamics.
Magic numbers in protein phase transitions
Biologists have recently come to appreciate that eukaryotic cells are home to a multiplicity of non-membrane bound compartments, many of which form and dissolve as needed for the cell to function. These dynamical “condensates” enable many central cellular functions – from ribosome assembly, to RNA regulation and storage, to signaling and metabolism. While it is clear that these compartments represent a type of separated phase, what controls their formation, how specific biological components are included or excluded, and how these structures influence physiological and biochemical processes remain largely mysterious. I will discuss recent experiments on phase separated condensates both in vitro and in vivo, and will present theoretical results that highlight a novel “magic number” effect relevant to the formation and control of two-component phase separated condensates.
Mixed active-passive suspensions: from particle entrainment to spontaneous demixing
Understanding the properties of active matter is a challenge which is currently driving a rapid growth in soft- and bio-physics. Some of the most important examples of active matter are at the microscale, and include active colloids and suspensions of microorganisms, both as a simple active fluid (single species) and as mixed suspensions of active and passive elements. In this last class of systems, recent experimental and theoretical work has started to provide a window into new phenomena including activity-induced depletion interactions, phase separation, and the possibility to extract net work from active suspensions. Here I will present our work on a paradigmatic example of mixed active-passive system, where the activity is provided by swimming microalgae. Macro- and micro-scopic experiments reveal that microorganism-colloid interactions are dominated by rare close encounters leading to large displacements through direct entrainment. Simulations and theoretical modelling show that the ensuing particle dynamics can be understood in terms of a simple jump-diffusion process, combining standard diffusion with Poisson-distributed jumps. Entrainment length can be understood within the framework of Taylor dispersion as a competition between advection by the no-slip surface of the cell body and microparticle diffusion. Building on these results, we then ask how external control of the dynamics of the active component (e.g. induced microswimmer anisotropy/inhomogeneity) can be used to alter the transport of passive cargo. As a first step in this direction, we study the behaviour of mixed active-passive systems in confinement. The resulting spatial inhomogeneity in swimmers’ distribution and orientation has a dramatic effect on the spatial distribution of passive particles, with the colloids accumulating either towards the boundaries or towards the bulk of the sample depending on the size of the container. We show that this can be used to induce the system to de-mix spontaneously.
Theory, reimagined
Physics offers countless examples for which theoretical predictions are astonishingly powerful. But it’s hard to imagine a similar precision in complex systems where the number and interdependencies between components simply prohibits a first-principles approach, look no further than the challenge of the billions of neurons and trillions of connections within our own brains. In such settings how do we even identify the important theoretical questions? We describe a systems-scale perspective in which we integrate information theory, dynamical systems and statistical physics to extract understanding directly from measurements. We demonstrate our approach with a reconstructed state space of the behavior of the nematode C. elegans, revealing a chaotic attractor with symmetric Lyapunov spectrum and a novel perspective of motor control. We then outline a maximally predictive coarse-graining in which nonlinear dynamics are subsumed into a linear, ensemble evolution to obtain a simple yet accurate model on multiple scales. With this coarse-graining we identify long timescales and collective states in the Langevin dynamics of a double-well potential, the Lorenz system and in worm behavior. We suggest that such an ``inverse’’ approach offers an emergent, quantitative framework in which to seek rather than impose effective organizing principles of complex systems.
Stochastic control of passive colloidal objects by micro-swimmers
The way single colloidal objects behave in presence of active forces arising from within the bulk of the system is crucial to many situations, notably biological and ecological (e.g. intra-cellular transport, predation), and potential medical or environmental applications (e.g. targeted delivery of cargoes, depollution of waters and soils). In this talk I will present experimental findings that my collaborators and I have obtained over the past years on the dynamics of single Brownian colloids in suspensions of biological micro-swimmers, especially the green alga Chlamydomonas reinhardtii. I'll show notably that spatial heterogeneities and anisotropies in the active particles statistics can control the preferential localisation of their passive counterparts. The results will be rationalized using theoretical approaches from hydrodynamics and stochastic processes.
Biology is “messy”. So how can we take theory in biology seriously and plot predictions and experiments on the same axes?
Many of us came to biology from physics. There we have been trained on such classic examples as muon g-2, where experimental data and theoretical predictions agree to many significant digits. Now, working in biology, we routinely hear that it is messy, most details matter, and that the best hope for theory in biology is to be semi-qualitative, predict general trends, and to forgo the hope of ever making quantitative predictions with the precision that we are used to in physics. Colloquially, we should be satisfied even if data and models differ so much that plotting them on the same plot makes little sense. However, some of us won’t be satisfied by this. So can we take theory in biology seriously and predict experimental outcomes within (small) error bars? Certainly, we won’t be able to predict everything, but this is never required, even in traditional physics. But we should be able to choose some features of data that are nontrivial and interesting, and focus on them. We also should be able to find different classes of models --- maybe even null models --- that match biology better, and thus allow for a better agreement. It is even possible that large-dimensional datasets of modern high-throughput experiments, and the ensuing “more is different” statistical physics style models will make quantitative, precise theory easier. To explore the role of quantitative theory in biology, in this workshop, eight speakers will address some of the following general questions based on their specific work in different corners of biology: Which features of biological data are predictable? Which types of models are best suited to making quantitative predictions in different fields? Should theorists interested in quantitative predictions focus on different questions, not typically asked by biologists? Do large, multidimensional datasets make theories (and which theories?) more or less likely to succeed? This will be an unapologetically theoretical physics workshop — we won’t focus on a specific subfield of biology, but will explore these questions across the fields, hoping that the underlying theoretical frameworks will help us find the missing connections.
Flow, fluctuate and freeze: Epithelial cell sheets as soft active matter
Epithelial cell sheets form a fundamental role in the developing embryo, and also in adult tissues including the gut and the cornea of the eye. Soft and active matter provides a theoretical and computational framework to understand the mechanics and dynamics of these tissues.I will start by introducing the simplest useful class of models, active brownian particles (ABPs), which incorporate uncoordinated active crawling over a substrate and mechanical interactions. Using this model, I will show how the extended ’swirly’ velocity fluctuations seen in sheets on a substrate can be understood using a simple model that couples linear elasticity with disordered activity. We are able to quantitatively match experiments using in-vitro corneal epithelial cells.Adding a different source of activity, cell division and apoptosis, to such a model leads to a novel 'self-melting' dense fluid state. Finally, I will discuss a direct application of this simple particle-based model to the steady-state spiral flow pattern on the mouse cornea.
(What) can soft matter physics teach us about biological function?
The “soft, active, and living matter” community has grown tremendously in recent years, conducting exciting research at the interface between soft matter and biological systems. But are all living systems also soft matter systems? Do the ideas of function (or purpose) in biological systems require us to introduce deep new ideas into the framework of soft matter theories? Does the (often) qualitatively different character of data in biological experiments require us to change the types of experiments we conduct and the goals of our theoretical treatments? Eight speakers will anchor the workshop, exploring these questions across a range of biological system scales. Each speaker will deliver a 10-minute talk with another 10 minutes set aside for moderated questions/discussion. We expect the talks to be broad, bold, and provocative, discussing both the nature of the theoretical tools and experimental techniques we have at present and also those we think we will ultimately need to answer deep questions at the interface of soft matter and biology.
Measuring transcription at a single gene copy reveals hidden drivers of bacterial individuality
Single-cell measurements of mRNA copy numbers inform our understanding of stochastic gene expression, but these measurements coarse-grain over the individual copies of the gene, where transcription and its regulation take place stochastically. We recently combined single-molecule quantification of mRNA and gene loci to measure the transcriptional activity of an endogenous gene in individual Escherichia coli bacteria. When interpreted using a theoretical model for mRNA dynamics, the single-cell data allowed us to obtain the probabilistic rates of promoter switching, transcription initiation and elongation, mRNA release and degradation. Unexpectedly, we found that gene activity can be strongly coupled to the transcriptional state of another copy of the same gene present in the cell, and to the event of gene replication during the bacterial cell cycle. These gene-copy and cell-cycle correlations demonstrate the limits of mapping whole-cell mRNA numbers to the underlying stochastic gene activity and highlight the contribution of previously hidden variables to the observed population heterogeneity.
Can machine learning learn new physics, or do we need to put it in by hand?"\
There has been a surge of publications on using machine learning (ML) on experimental data from physical systems: social, biological, statistical, and quantum. However, can these methods discover fundamentally new physics? It can be that their biggest impact is in better data preprocessing, while inferring new physics is unrealistic without specifically adapting the learning machine to find what we are looking for — that is, without the “intuition” — and hence without having a good a priori guess about what we will find. Is machine learning a useful tool for physics discovery? Which minimal knowledge should we endow the machines with to make them useful in such tasks? How do we do this? Eight speakers below will anchor the workshop, exploring these questions in contexts of diverse systems (from quantum to biological), and from general theoretical advances to specific applications. Each speaker will deliver a 10 min talk with another 10 minutes set aside for moderated questions/discussion. We expect the talks to be broad, bold, and provocative, discussing where the field is heading, and what is needed to get us there.
Physics of Behavior: Now that we can track (most) everything, what can we do with the data?
We will organize the workshop around one question: “Now that we can track (most) everything, what can we do with the data?” Given the recent dramatic advances in technology, we now have behavioral data sets with orders of magnitude more accuracy, dimensionality, diversity, and size than we had even a few years ago. That being said, there is still little agreement as to what theoretical frameworks can inform our understanding of these data sets and suggest new experiments we can perform. We hope that after this workshop we’ll see a variety of new ideas and perhaps gain some inspiration. We have invited eight speakers, each studying different systems, scales, and topics, to provide 10 minute presentations focused on the above question, with another 10 minutes set aside for questions/discussions (moderated by the two of us). Although we naturally expect speakers to include aspects of their own work, we have encouraged all of them to think broadly and provocatively. We are also hoping to organize some breakout sessions after the talks so that we can have some more expanded discussions about topics arising during the meeting.
Theoretical coverage
21 items