Latest

SeminarPhysics of LifeRecording

Membrane mechanics meet minimal manifolds

Leroy Jia
Flatiron Institute
Jun 20, 2022

Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes studied by the Sharma (IISc Bangalore) and Dogic (UCSB) Labs have in-plane fluid-like dynamics and out-of-plane bending elasticity, but their open edges and micron length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. First, we discuss how doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped minimal surfaces with complex edge structures. Theoretical modeling demonstrates that their formation is driven by increasing positive Gaussian modulus, which in turn is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to exotic topologically distinct structures, including shapes similar to catenoids, tri-noids, four-noids, and higher order structures. We then mathematically explore the mechanics of these catenoid-like structures subject to an external axial force and elucidate their intimate connection to two problems whose solutions date back to Euler: the shape of an area-minimizing soap film and the buckling of a slender rod under compression. A perturbation theory argument directly relates the tensions of membranes to the stability properties of minimal surfaces. We also investigate the effects of including a Gaussian curvature modulus, which, for small enough membranes, causes the axial force to diverge as the ring separation approaches its maximal value.

SeminarPhysics of LifeRecording

Building a synthetic cell: Understanding the clock design and function

Qiong Yang
U Michigan - Ann Arbor
Oct 20, 2020

Clock networks containing the same central architectures may vary drastically in their potential to oscillate, raising the question of what controls robustness, one of the essential functions of an oscillator. We computationally generate an atlas of oscillators and found that, while core topologies are critical for oscillations, local structures substantially modulate the degree of robustness. Strikingly, two local structures, incoherent and coherent inputs, can modify a core topology to promote and attenuate its robustness, additively. The findings underscore the importance of local modifications to the performance of the whole network. It may explain why auxiliary structures not required for oscillations are evolutionary conserved. We also extend this computational framework to search hidden network motifs for other clock functions, such as tunability that relates to the capabilities of a clock to adjust timing to external cues. Experimentally, we developed an artificial cell system in water-in-oil microemulsions, within which we reconstitute mitotic cell cycles that can perform self-sustained oscillations for 30 to 40 cycles over multiple days. The oscillation profiles, such as period, amplitude, and shape, can be quantitatively varied with the concentrations of clock regulators, energy levels, droplet sizes, and circuit design. Such innate flexibility makes it crucial to studying clock functions of tunability and stochasticity at the single-cell level. Combined with a pressure-driven multi-channel tuning setup and long-term time-lapse fluorescence microscopy, this system enables a high-throughput exploration in multi-dimension continuous parameter space and single-cell analysis of the clock dynamics and functions. We integrate this experimental platform with mathematical modeling to elucidate the topology-function relation of biological clocks. With FRET and optogenetics, we also investigate spatiotemporal cell-cycle dynamics in both homogeneous and heterogeneous microenvironments by reconstructing subcellular compartments.

topology coverage

6 items

Seminar6
Domain spotlight

Explore how topology research is advancing inside Physics of Life.

Visit domain