← Back

Biological Motion

Topic spotlight
TopicPsychology

biological motion

Discover seminars, jobs, and research tagged with biological motion across Psychology.
3 curated items3 Seminars
Updated 8 months ago
3 items · biological motion

Latest

3 results
SeminarPsychology

Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake

Casey Becker
University of Pittsburgh
Apr 16, 2025

Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.

SeminarPsychology

Heading perception in crowded environments

Anna-Gesina Hülemeier
University of Münster
Jun 15, 2022

Self-motion through a visual world creates a pattern of expanding visual motion called optic flow. Heading estimation from the optic flow is accurate in rigid environments. But it becomes challenging when other humans introduce an independent motion to the scene. The biological motion of human walkers consists of translation through space and associated limb articulation. The characteristic motion pattern is regular, though complex. A world full of humans moving around is nonrigid, causing heading errors. But limb articulation alone does not perturb the global structure of the flow field, matching the rigidity assumption. For heading perception from optic flow analysis, limb articulation alone should not impair heading estimates. But we observed heading biases when participants encountered a group of point-light walkers. Our research investigates the interactions between optic flow perception and biological motion perception. We further analyze the impact of environmental information.

biological motion coverage

3 items

Seminar3
Domain spotlight

Explore how biological motion research is advancing inside Psychology.

Visit domain