emotional expression
Latest
Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake
Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.
The Effects of Negative Emotions on Mental Representation of Faces
Face detection is an initial step of many social interactions involving a comparison between a visual input and a mental representation of faces, built from previous experience. Whilst emotional state was found to affect the way humans attend to faces, little research has explored the effects of emotions on the mental representation of faces. Here, we examined the specific perceptual modulation of geometric properties of the mental representations associated with state anxiety and state depression on face detection, and to compare their emotional expression. To this end, we used an adaptation of the reverse correlation technique inspired by Gosselin and Schyns’, (2003) ‘Superstitious Approach’, to construct visual representations of observers’ mental representations of faces and to relate these to their mental states. In two sessions, on separate days, participants were presented with ‘colourful’ noise stimuli and asked to detect faces, which they were told were present. Based on the noise fragments that were identified as faces, we reconstructed the pictorial mental representation utilised by each participant in each session. We found a significant correlation between the size of the mental representation of faces and participants’ level of depression. Our findings provide a preliminary insight about the way emotions affect appearance expectation of faces. To further understand whether the facial expressions of participants’ mental representations reflect their emotional state, we are conducting a validation study with a group of naïve observers who are asked to classify the reconstructed face images by emotion. Thus, we assess whether the faces communicate participants’ emotional states to others.
emotional expression coverage
2 items
Explore how emotional expression research is advancing inside Psychology.
Visit domain