memory representations
Latest
Distributed and stable memory representations may lead to serial dependence
Perception and action are biased by our recent experiences. Even when a sequence of stimuli are randomly presented, responses are sometimes attracted toward the past. The mechanism of such bias, recently termed serial dependence, is still under investigation. Currently, there is mixed evidence indicating that such bias could be either from a sensory and perceptual origin or occurring only at decisional stages. In this talk, I will present recent findings from our group showing that biases are decreased when disrupting the memory trace in a premotor region in a simple visuomotor task. In addition, we have shown that this bias is stable over periods of up to 8 s. At the end, I will show ongoing analysis of a recent experiment and argue that serial dependence may rely on distributed memory representations of stimuli and task relevant features.
Flexible codes and loci of visual working memory
Neural correlates of visual working memory have been found in early visual, parietal, and prefrontal regions. These findings have spurred fruitful debate over how and where in the brain memories might be represented. Here, I will present data from multiple experiments to demonstrate how a focus on behavioral requirements can unveil a more comprehensive understanding of the visual working memory system. Specifically, items in working memory must be maintained in a highly robust manner, resilient to interference. At the same time, storage mechanisms must preserve a high degree of flexibility in case of changing behavioral goals. Several examples will be explored in which visual memory representations are shown to undergo transformations, and even shift their cortical locus alongside their coding format based on specifics of the task.
Visual working memory representations are distorted by their use in perceptual comparisons
Visual working memory (VWM) allows us to maintain a small amount of task-relevant information in mind so that we can use them to guide our behavior. Although past studies have successfully characterized its capacity limit and representational quality during maintenance, the consequence of its usage for task-relevant behaviors has been largely unknown. In this talk, I will demonstrate that VWM representations get distorted when they are used for perceptual comparisons with new visual inputs, especially when the inputs are subjectively similar to the VWM representations. Furthermore, I will show that this similarity-induced memory bias (SIMB) occurs for both simple (e.g. , color, shape) and complex stimuli (e.g., real world objects, faces) that are perceptually encoded and retrieved from long-term memory. Given the observed versatility of the SIMB, its implication for other memory distortion phenomena (e.g., distractor-induced distortion, misinformation effect) will be discussed.
memory representations coverage
3 items
Explore how memory representations research is advancing inside Psychology.
Visit domain